Energy and electron transfer from fluorescent mesostructured organosilica framework to guest dyes.

Langmuir

Toyota Central Research and Development Laboratories, Incorporated, Nagakute, Aichi 480-1192, Japan.

Published: February 2012

Energy and electron transfer from frameworks of nanoporous or mesostructured materials to guest species in the nanochannels have been attracting much attention because of their increasing availability for the design and construction of solid photofunctional systems, such as luminescent materials, photovoltaic devices, and photocatalysts. In the present study, energy and electron-transfer behavior of dye-doped periodic mesostructured organosilica films with different host-guest arrangements were systematically examined. Fluorescent tetraphenylpyrene (TPPy)-silica mesostructured films were used as a host donor. The location of guest perylene bisimide (PBI) dye molecules, acting as an acceptor, could be controlled on the basis of the molecular design of the PBI substituent groups. PBI dyes with bulky substituents and polar anchoring groups were located at the pore surface with low self-aggregation, which induced efficient energy or electron transfer because of the close host-guest arrangement. However, PBI dye with bulky and hydrophobic substituents was located in the center of template surfactant micelles; the fluorescence emission from the host TPPy groups was hardly quenched when the host-guest distance was longer than the critical Förster radius (ca. 4.5 nm). The relationship between the energy or electron-transfer efficiency and the location of guest species in the channels of mesostructured organosilica was first revealed by molecular design of the PBI substituents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la204645kDOI Listing

Publication Analysis

Top Keywords

energy electron
12
electron transfer
12
mesostructured organosilica
12
guest species
8
energy electron-transfer
8
location guest
8
pbi dye
8
molecular design
8
design pbi
8
energy
5

Similar Publications

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

Electrochemical Reduction of CO to CHOH Catalyzed by an Iron Porphyrinoid.

J Am Chem Soc

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India.

Designing catalysts for the selective reduction of CO, resulting in products having commercial value, is an important area of contemporary research. Several molecular catalysts have been reported to facilitate the reduction of CO (both electrochemical and photochemical) to yield 2e/2H electron-reduced products, CO and HCOOH, and selective reduction of CO beyond 2e/2H is rare. This is partly because the factors that control the selectivity of CO reduction beyond 2e are not yet understood.

View Article and Find Full Text PDF

Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes.

View Article and Find Full Text PDF

Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.

View Article and Find Full Text PDF

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!