Soft tissues such as blood vessel, lung, ureter, skin, etc., possess mechanical behavior characterized by a "J"-shaped curve on a stress-strain diagram with a low-stiffness highly elastic zone giving rise to a high-stiffness zone. This mechanical behavior may be adaptive and protective against aneurysm formation in tissues whose primary loading is pressure-based. "J"-shaped behavior arises from the synergistic interplay of two main structural proteins: collagen and elastin. An innovative electrospinning technique has been utilized to form tubular scaffold composites with structural features reminiscent of the corrugated laminae seen in blood vessels. In doing so, tubular scaffolds have been fabricated with complex "J"-shaped behavior through the use of elastic polyurethane and reinforcing poly-glycolic acid (PGA) woven mesh. In these studies, corrugated laminae were formed on the 175 μm and 1.5 mm scale. Initial moduli were 0.5±0.17 MPa (mean±standard deviation) giving rise to stiffer moduli of 36.09±6.72 MPa at a strain of 1.31±0.15. Burst pressures were physiologically relevant at 3095±1016 mmHg. The toughness of these prototypes was 6.3±1.9 MJ/m(3). The ability to employ different materials and different formation parameters utilizing this technique promises the ability to match complex stress-strain behaviors in soft tissues with a high degree of fidelity.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2011.0286DOI Listing

Publication Analysis

Top Keywords

tubular scaffold
8
innovative electrospinning
8
electrospinning technique
8
soft tissues
8
mechanical behavior
8
"j"-shaped behavior
8
corrugated laminae
8
construction tubular
4
scaffold mimics
4
mimics j-shaped
4

Similar Publications

Unlabelled: Bactofilins are a recently discovered class of cytoskeletal protein, widely implicated in subcellular organization and morphogenesis in bacteria and archaea. Several lines of evidence suggest that bactofilins polymerize into filaments using a central β-helical core domain, flanked by variable N- and C-terminal domains that may be important for scaffolding and other functions. However, a systematic exploration of the characteristics of these domains has yet to be performed.

View Article and Find Full Text PDF

Nanomembrane on Graphene: Delamination Dynamics and 3D Construction.

ACS Nano

January 2025

Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China.

Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes.

View Article and Find Full Text PDF

Template-Assisted Electrospinning and 3D Printing of Multilayered Hierarchical Vascular Grafts.

J Biomed Mater Res B Appl Biomater

January 2025

Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.

Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.

View Article and Find Full Text PDF

A coaxial 3D bioprinted hybrid vascular scaffold based on decellularized extracellular matrix/nano clay/sodium alginate bioink.

Int J Biol Macromol

December 2024

Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China. Electronic address:

Currently, vascular grafting is the preferred option to replace or bypass the defective vascular segments, but finding materials with good biocompatibility and diversity alternative for practical clinical applications are still the challenge. The construction of tissue engineered blood vessels (TEBVs) with complex structures will be realized using 3D bioprinting technology, which provides a new idea for vascular transplantation. In this paper, the decellularized extracellular matrix (dECM)/nano clay (NC)/sodium alginate (SA) hybrid bioink was prepared to construct tubular scaffolds in vitro by coaxial 3D bioprinting.

View Article and Find Full Text PDF

CUL4B protects kidneys from acute injury by restraining p53/PAI-1 signaling.

Cell Death Dis

December 2024

Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Acute kidney injury (AKI) caused by nephrotoxins, ischemia reperfusion (IR) or sepsis is associated with high morbidity and mortality. Unveiling new mechanisms underlying AKI can help develop new therapeutic strategy. Cullin 4B (CUL4B) is a scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!