A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Nondestructive imaging of elements distribution in biomedical samples by X-ray fluorescence computed tomography]. | LitMetric

X-ray fluorescence computed tomography is a stimulated emission tomography that allows nondestructive reconstruction of the elements distribution in the sample, which is important for biomedical investigations. Owing to the high flux density and easy energy tunability of highly collimated synchrotron X-rays, it is possible to apply X-ray fluorescence CT to biomedical samples. Reported in the present paper, an X-ray fluorescence CT system was established at Shanghai Synchrotron Radiation Facility for the investigations of trace elements distribution inside biomedical samples. By optimizing the experiment setup, the spatial resolution was improved and the data acquisition process was obviously speeded up. The maximum-likelihood expectation-maximization algorithm was introduced for the image reconstruction, which remarkably improved the imaging accuracy of element distributions. The developed system was verified by the test sample and medical sample respectively. The results showed that the distribution of interested elements could be imaged correctly, and the spatial resolution of 150 m was achieved. In conclusion, the developed system could be applied to the research on large-size biomedical samples, concerning imaging accuracy, spatial resolution and data collection time.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biomedical samples
16
x-ray fluorescence
16
elements distribution
12
spatial resolution
12
fluorescence computed
8
imaging accuracy
8
developed system
8
biomedical
5
[nondestructive imaging
4
elements
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!