Download full-text PDF |
Source |
---|
Soc Cogn Affect Neurosci
January 2025
Department of Psychology, University of Essex, Colchester, United Kingdom.
In the Ouija board phenomenon, the lack of agency experienced by the players leads them to attribute the movement of the planchette to spirits. The aim of this study was to investigate the neural and cognitive mechanisms involved in generating the sense of agency in such a joint action context. Two players (a participant and a confederate) jointly moved a Ouija board style planchette containing a wireless mouse.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Faculty of Medicine and Pharmacy of Rabat, Mohammed V University of Rabat, Rabat, 10000, Morocco.
Gastrointestinal (GI) disease examination presents significant challenges to doctors due to the intricate structure of the human digestive system. Colonoscopy and wireless capsule endoscopy are the most commonly used tools for GI examination. However, the large amount of data generated by these technologies requires the expertise and intervention of doctors for disease identification, making manual analysis a very time-consuming task.
View Article and Find Full Text PDFSci Rep
January 2025
Xinjiang Vocational and Technical College of Communications, Urumqi, Xinjiang, 831401, China.
This paper aims to construct a green environmental protection system by advancing database energy-saving techniques and optimizing the energy-saving mechanism against the backdrop of blockchain integration. The protocol classification of wireless sensor networks is examined within the context of the rapid growth of information technology. The analysis draws upon the database storage and sharing model and recent research examples that connect blockchain and database technology.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
Real-time monitoring of hemodynamics is crucial for diagnosing disorders within implanted vascular grafts and facilitating timely treatment. Integrating vascular grafts with advanced flexible electronics offers a promising approach to developing smart vascular grafts (SVGs) capable of continuous hemodynamic monitoring. However, most existing SVG devices encounter significant challenges in practical applications, particularly regarding biomechanical compatibility and the effective evaluation of vascular status.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!