Optically active amphiphilic compounds derived from N-methylephedrine, N-methylprolinol, or cinchona derivatives possessing bromide or chiral lactate counterions were efficiently used as protective agents for rhodium(0) nanoparticles. The full characterization of these surfactants and the obtained nanocatalysts was performed by means of different techniques. These spherical nanoparticles, with sizes between 0.8-2.5 nm depending on the stabilizer, were evaluated in the hydrogenation of model substrates in neat water as a green solvent. The rhodium catalysts showed relevant kinetic properties, but modest enantiomeric excess values of up to 13 % in the hydrogenation of ethyl pyruvate. They were also investigated in the hydrogenation of disubstituted arenes, such as m-methylanisole, providing interesting catalytic activities and a preferential cis selectivity of around 80 %; however, no asymmetric induction was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201100364 | DOI Listing |
Nanomicro Lett
December 2024
Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility. Among them, the ultrahigh electrical conductivity (σ) and tunable band structures of benchmark TiCT MXene demonstrate its good potential as thermoelectric (TE) materials. However, both the large variation of σ reported in the literature and the intrinsically low Seebeck coefficient (S) hinder the practical applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:
Hypothesis: The addition of water to a non-ionic N-oxide deep eutectic solvent(DES) composed of phenylacetic acid (PhAA) and N-dodecylmorpholine-N-oxide(MO-12) in a 1:1 M ratio(PhAA/MO-12) will promote interfacial nanostructure formation due to increased proton transfer and solvophobic interactions, leading to reduced friction.
Experiments: The interfacial structure and friction of PhAA/MO-12 with water content up to 41.9 wt% were investigated at mica surfaces.
The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defined ligand-binding pockets in its disordered structure. Here, we implement a deep artificial neural network-based machine learning approach, which is able to statistically distinguish the fuzzy ensemble of conformational substates of αS in neat water from those in aqueous fasudil (small molecule of interest) solution.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India.
Deep eutectic solvents (DESs) have gained popularity in various applications due to their improved environmental sustainability and biodegradability. For the present study, several polyhydric alcohols, including ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), and glycerol (Gly), have been used as hydrogen bond donors (HBDs) and choline chloride (ChCl) as a hydrogen bond acceptor (HBA) in a fixed molar ratio to form a homogenous and stable DES. Controlled water mixing into such neat DESs has always been thought to be a quick and efficient method to tune the chemical and thermodynamic properties of DESs.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Two types of glycerol stearates, glycerol monostearate (GMS) and glycerol tristearate (GTS), were added into poly(butylene adipate-co-terephtalate) (PBAT), with the aim to improve their water vapor barrier properties. The effects of the two small molecules on microstructure, chain mobility, and surface hydrophobicity were amply assessed via both experimental and simulation methods. The incorporation of the modifiers at small loadings, 5 wt% of GMS and 1 wt% of GTS, resulted in substantial improvements in water vapor barrier properties, while a further increase in the modifier content resulted in deterioration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!