Allergen-specific CTL have a protective effect on allergic airway inflammation, a function thought to be mediated by cytokines, especially IFN-γ. However, the contribution of cytotoxic function to this protective effect has not been investigated. We examined the contribution of cytotoxic function to the therapeutic effect of allergen-specific CTL in allergic airway inflammation. We used a murine model of allergic airway inflammation in which mice were sensitized to OVA and then challenged with the same Ag via the intranasal route. CTL were elicited in these mice by immunization with dendritic cells (DC) or by adoptive transfer of in vitro-activated CD8(+) T cells. Hallmark features of allergic asthma, such as infiltration of eosinophils in the bronchoalveolar lavage fluid and mucus production, were assessed. Suppression of allergic airway inflammation by allergen-specific CTL was critically dependent on the expression of perforin, a key component of the cytotoxic machinery. Both perforin-sufficient and perforin-deficient allergen-specific CTL were recovered from the lungs of allergen-sensitized mice and upregulated CD69 expression and secreted the cytokines IFN-γ and TNF-α upon intranasal allergen challenge. However, only perforin-sufficient CTL inhibited eosinophil infiltration in the airway, mucus production, and cytokine accumulation in the bronchoalveolar lavage fluid. Treatment with allergen-specific CTL, but not their perforin-deficient counterparts, was also associated with a decrease in the number of DC in the mediastinal lymph node. Our data suggest that the cytotoxic function of allergen-specific CD8(+) T cells is critical to their ability to moderate allergic airway inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1102699 | DOI Listing |
Immunology
May 2024
Department of Immunology and Inflammation, AAIIT LLC, San Diego, California, USA.
Natural IgE cytotoxic peptides (nECPs), which are derived from the constant domain of the heavy chain of human IgE producing B cells via endoplasmic reticulum (ER) stress, are decorated onto MHC class 1a molecules (MHCIa) as unique biomarkers for CTL (cytotoxic T lymphocyte)-mediated immune surveillance. Human IgE exhibits only one isotype and lacks polymorphisms; IgE is pivotal in mediating diverse, allergen-specific allergies. Therefore, by disrupting self-IgE tolerance via costimulation, the CTLs induced by nECPs can serve as universal allergy vaccines (UAVs) in humans to dampen IgE production mediated by diverse allergen-specific IgE-secreting B cells and plasma cells expressing surface nECP-MHCIa as targets.
View Article and Find Full Text PDFUnlabelled: Natural IgE cytotoxic peptides (nECPs), which are derived from the constant domain of the heavy chain of human IgE producing B cells via endoplasmic reticulum (ER) stress, are decorated onto MHC class 1a molecules (MHCIa) as unique biomarkers for CTL (cytotoxic T lymphocyte)-mediated immune surveillance. Human IgE exhibits only one isotype and lacks polymorphisms; IgE is pivotal in mediating diverse, allergen-specific allergies. Therefore, by disrupting self-IgE tolerance via costimulation, the cytotoxic T lymphocytes (CTLs) induced by nECPs can serve as universal allergy vaccines (UAVs) in humans to dampen IgE production mediated by diverse allergen-specific IgE- secreting B cells and plasma cells expressing surface nECP-MHCIa as targets.
View Article and Find Full Text PDFFront Allergy
September 2022
Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States.
Mouse models of food allergy have contributed to our understanding of various aspects of the disease, including susceptibilities, symptom spectra, cellular mechanisms, and therapeutic approaches. Previously, we used a mouse model of non-anaphylactic cow's milk allergy (CMA) and investigated sex- and strain-dependent differences in immunological, neurological, and behavioral sequelae. We showed that male C57BL/6J mice sensitized to a bovine whey protein, β-lactoglobulin (BLG; Bos d 5), exhibited anxiety- and depression-like behavior upon acute allergen challenge.
View Article and Find Full Text PDFMucosal Immunol
January 2016
Malaghan Institute of Medical Research, Wellington, New Zealand.
Allergic airway inflammation is driven by the recognition of inhaled allergen by T helper type 2 (Th2) cells in the airway and lung. Allergen-specific cytotoxic T lymphocytes (CTLs) can strongly reduce airway inflammation, however, the mechanism of their inhibitory activity is not fully defined. We used mouse models to show that allergen-specific CTLs reduced early cytokine production by Th2 cells in lung, and their subsequent accumulation and production of interleukin (IL)-4 and IL-13.
View Article and Find Full Text PDFJ Nutr
February 2013
Department of Animal Science, Macdonald Campus, McGill University, Ste Anne de Bellevue, Quebec, Canada.
Probiotic supplementation and oral tolerance induction can reduce certain types of food allergy. The objectives of this study were to investigate the allergy-reducing effects of probiotics (VSL#3) and/or oral tolerance induction via low doses of an allergen supplementation in β-lactoglobulin (BLG)-sensitized mice. Three-week-old, male BALB/c mice were divided into 6 groups (n = 8/group): sham-sensitized negative control (CTL-), BLG-sensitized positive control (CTL+), oral tolerance-induced and BLG-sensitized group (OT), probiotic-supplemented OT group (OTP), probiotic-supplemented CTL- (PRO), and probiotic-supplemented and BLG-sensitized (PROC) groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!