The C9 position of cinchona alkaloids functions as a molecular hinge, with internal rotations around the C8-C9 (τ(1)) and C9-C4' (τ(2)) bonds giving rise to four low energy conformers (1; anti-closed, anti-open, syn-closed, and syn-open). By substituting the C9 carbinol centre by a configurationally defined fluorine substituent, a fluorine-ammonium ion gauche effect (σ(C-H) → σ(C-F)*; F(δ-)⋅⋅⋅N(+)) encodes for two out of the four possible conformers (2). This constitutes a partial solution to the long-standing problem of governing internal rotations in cinchonium-based catalysts relying solely on a fluorine conformational effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201102859 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!