A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. | LitMetric

Polyethylene (PE) sheets were modified by radiation-induced graft polymerization (RIGP) of an epoxy-group containing monomer glycidyl methacrylate (GMA). The epoxy group of GMA was opened by introducing sodium sulfite (SS) and diethylamine (DEA) as representatives of negatively and positively charged functional groups, respectively. These modified surfaces by RIGP, termed GMA, SS, and DEA sheets, were investigated to elucidate their effects on initial adhesion and subsequent biofilm formation of Escherichia coli. Initial adhesion test revealed that E. coli density and viability were governed by sheet surface electrostatic property: E. coli cell density on the DEA sheet was 23 times higher than that on the SS sheet after 8 h incubation. The viability of E. coli cells dramatically decreased after contact with the DEA sheet, but remained high on the SS sheet. E. coli biofilm structure on the DEA sheet was dense, homogeneous, and uniform, with biomass higher than that of the GMA and SS sheets by factors of 14.0 and 37.5, respectively. On the contrary, biofilm structure on the SS sheet was sparse, heterogeneous, and mushroom-shaped. More than 40% of E. coli biofilm on the DEA sheet was retained under a high liquid shear force condition (5,000 s(-1)), whereas 97% and 100% of biofilms on the GMA and SS sheets were sloughed, indicating that E. coli biofilm robustness depends on surface charge property of the substratum. This suggests that substratum surface fabrication by RIGP may enhance or suppress biofilm formation, a finding with potentially important practical implications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.24429DOI Listing

Publication Analysis

Top Keywords

dea sheet
16
initial adhesion
12
biofilm formation
12
coli biofilm
12
surface charge
8
charge property
8
coli
8
escherichia coli
8
coli initial
8
adhesion subsequent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!