Background: Ceramic bearings in total hip arthroplasty (THA) have been introduced in clinical practice to minimize the problem of polyethylene particle-induced osteolysis. The aim of the study is to report the results of 68 consecutive alumina-on-alumina THAs done in 61 patients for avascular necrosis (AVN) of the femoral head.
Materials And Methods: In all implants a press-fit cup was used; it was combined with a 32-mm alumina head and with titanium-alloy stems. The mean age at surgery was 50 years. At an average follow-up of 13 years two hips have been revised, one for periprosthetic infection and one for excessive abduction of the cup.
Results: No revision for aseptic loosening is recorded; one anatomical cementless femoral stem had radiological evidence of definite aseptic loosening. No dislocations occurred, and no osteolysis was observed.
Conclusions: The results support the application of alumina-alumina THA for long-lasting replacements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284675 | PMC |
http://dx.doi.org/10.1007/s10195-011-0174-7 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Objective: Cyclin-dependent kinase (CDK)-4/6 inhibitors have significantly improved outcomes in several cancers but can also induce various organ system toxicities, including musculoskeletal disorders. This study aimed to comprehensively characterize the musculoskeletal adverse events (MSAEs) associated with CDK4/6 inhibitors based on real-world data.
Methods: Reports of MSAEs linked to CDK4/6 inhibitors from the first quarter (Q1) of 2015 and 2023 Q4 were extracted from the FAERS.
J Orthop Surg Res
January 2025
Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China.
Background: The endoplasmic reticulum stress (ER stress) has been involved in various musculoskeletal disorders including non-traumatic osteonecrosis of femoral head (NT-ONFH).
Objective: The current study aimed to investigate the association of glucose-regulated protein 78 (GRP78) as well as CCAAT/enhancer-binding protein homologous protein (CHOP) expressions in serum and femoral head (FH) tissues with NT-ONFH's severity.
Methods: We enrolled NT-ONFH patients (n = 150) alongside healthy controls (HCs, n = 150).
J Orthop Surg Res
January 2025
Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China.
Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bone Joint, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256600, China.
This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!