Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The critical role of the Auger parameter in providing insight into both initial state and final state factors affecting measured XPS binding energies is illustrated by analysis of Ni 2p(3/2) and L(3)M(45)M(45) peaks as well as the Auger parameters of nickel alloys, halides, oxide, hydroxide and oxy-hydroxide. Analyses of the metal and alloys are consistent with other works, showing that final state relaxation shifts, ΔR, are determined predominantly by changes in the d electron population and are insensitive to inter-atomic charge transfer. The nickel halide Auger parameters are dominated by initial state effects, Δε, with increasing positive charge on the core nickel ion induced by increasing electronegativity of the ligands. This effect is much greater than the final state shifts; however, the degree of covalency is reflected in the Wagner plot where the more polarizable iodide and bromide have greater ΔR. The initial state shift for NiO is much smaller than those of Ni(OH)(2) or NiOOH and the effective oxidation state is much less than that inferred from the average electronegativity of the ligand(s). Auger parameter analysis indicates that the bonding in NiO appears to have stronger contributions from initial state charge transfer from the oxygen ligands than that in the hydroxide and oxyhydroxide consistent with the considerable differences in the Ni-O bond lengths in these compounds with some relaxation of this state occurring during final state phenomena. The Auger parameter of NiOOH is, however, shifted positively, like the iodide, indicating greater polarizability of the ligands and covalency in this bonding. There is support for more direct use of relative bond lengths in interpreting differences between related compounds rather than more general electronegativity or similar parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp22419d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!