Although embryonic stem (ES) cell-derived hepatocytes have the capacity for liver engraftment and repopulation, their in vivo hepatic function has not been analyzed yet. We aimed to determine the metabolic function and therapeutic action of ES cell-derived hepatocytes after serial liver repopulations in fumaryl acetoacetate hydrolase knockout (Fah(-/-)) mice. Albumin expressing (Alb(+)) cells were obtained by hepatic differentiation of ES cells using two frequently reported methods. After transplantation, variable levels of liver repopulation were found in Fah(-/-) mice recipients. FAH expressing (FAH(+)) hepatocytes were found either as single cells or as nodules with multiple hepatocytes. After serial transplantation, the proportion of the liver that was repopulated by the re-transplanted FAH(+) hepatocytes increased significantly. ES cell-derived FAH(+) hepatocytes were found in homogenous nodules and corrected the liver metabolic disorder of Fah(-/-) recipients and rescued them from death. ES cell-derived hepatocytes had normal karyotype, hepatocytic morphology and metabolic function both in vitro and in vivo. In conclusion, ES cell-derived hepatocytes were capable of liver repopulation and correction of metabolic defects after serial transplantation. Our results are an important piece of evidence to support future clinical applications of ES cell-derived hepatocytes in treating liver diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314493 | PMC |
http://dx.doi.org/10.1016/j.biocel.2012.01.002 | DOI Listing |
Adv Sci (Weinh)
December 2024
Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
Human induced pluripotent stem cell derived hepatocytes (hiPSC-heps) hold promising value for acute liver failure (ALF) treatment, while their therapeutic efficacy is usually limited by low cell bioactivity and untargeted in vivo accumulation. Here, inspired by vascularity supporting cellular architectures in the tissues and organs, a novel vascularized hiPSC-heps spheroid based on microfluidic microcapsules is presented for liver repair via orthotopic transplantation. The microcapsules are comprised of aqueous cores that facilitate hiPSC-hep aggregating into spheroids, and hybrid hydrogel shells of sodium alginate and hyaluronic acid methacryloyl (HAMA).
View Article and Find Full Text PDFPLoS One
December 2024
Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
Cardiotoxicity associated with hepatic metabolism and drug-drug interactions is a serious concern. Predicting drug toxicity using animals remains challenging due to species and ethical concerns, necessitating the need to develop alternative approaches. Drug cardiotoxicity associated with hepatic metabolism cannot be detected using a cardiomyocyte-only evaluation system.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
Int J Mol Sci
December 2024
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI.
View Article and Find Full Text PDFBiochimie
December 2024
Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103, Kiel, Germany.
Plant sterols (PSs) exhibit intrinsic functions such as antibacterial effects. Their effects simultaneously on both host-mediated and bacteria-mediated pathogenesis are not yet fully understood. We hypothesized that when absorptive cells, defensive cells and detoxer cells are cultured together, their convergent response to an infectious pathogen depends on the molecular mimicry between the ingested sterols and their own defensive lipids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!