Although embryonic stem (ES) cell-derived hepatocytes have the capacity for liver engraftment and repopulation, their in vivo hepatic function has not been analyzed yet. We aimed to determine the metabolic function and therapeutic action of ES cell-derived hepatocytes after serial liver repopulations in fumaryl acetoacetate hydrolase knockout (Fah(-/-)) mice. Albumin expressing (Alb(+)) cells were obtained by hepatic differentiation of ES cells using two frequently reported methods. After transplantation, variable levels of liver repopulation were found in Fah(-/-) mice recipients. FAH expressing (FAH(+)) hepatocytes were found either as single cells or as nodules with multiple hepatocytes. After serial transplantation, the proportion of the liver that was repopulated by the re-transplanted FAH(+) hepatocytes increased significantly. ES cell-derived FAH(+) hepatocytes were found in homogenous nodules and corrected the liver metabolic disorder of Fah(-/-) recipients and rescued them from death. ES cell-derived hepatocytes had normal karyotype, hepatocytic morphology and metabolic function both in vitro and in vivo. In conclusion, ES cell-derived hepatocytes were capable of liver repopulation and correction of metabolic defects after serial transplantation. Our results are an important piece of evidence to support future clinical applications of ES cell-derived hepatocytes in treating liver diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314493PMC
http://dx.doi.org/10.1016/j.biocel.2012.01.002DOI Listing

Publication Analysis

Top Keywords

cell-derived hepatocytes
24
liver repopulation
12
fah+ hepatocytes
12
hepatocytes
10
liver
9
embryonic stem
8
stem cell-derived
8
serial liver
8
metabolic function
8
hepatocytes serial
8

Similar Publications

Biomimetic Vascularized iPSC-Hepatocyte Spheroids for Liver Regeneration.

Adv Sci (Weinh)

December 2024

Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.

Human induced pluripotent stem cell derived hepatocytes (hiPSC-heps) hold promising value for acute liver failure (ALF) treatment, while their therapeutic efficacy is usually limited by low cell bioactivity and untargeted in vivo accumulation. Here, inspired by vascularity supporting cellular architectures in the tissues and organs, a novel vascularized hiPSC-heps spheroid based on microfluidic microcapsules is presented for liver repair via orthotopic transplantation. The microcapsules are comprised of aqueous cores that facilitate hiPSC-hep aggregating into spheroids, and hybrid hydrogel shells of sodium alginate and hyaluronic acid methacryloyl (HAMA).

View Article and Find Full Text PDF

Cardiotoxicity associated with hepatic metabolism and drug-drug interactions is a serious concern. Predicting drug toxicity using animals remains challenging due to species and ethical concerns, necessitating the need to develop alternative approaches. Drug cardiotoxicity associated with hepatic metabolism cannot be detected using a cardiomyocyte-only evaluation system.

View Article and Find Full Text PDF

Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes.

Stem Cell Res Ther

December 2024

Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.

Article Synopsis
  • * MSC-derived exosomes (MSC-EXOs) play a crucial role in addressing various liver conditions like fibrosis, failure, and oxidative stress.
  • * Recent research highlights the formation, function, and characteristics of MSC-EXOs, underscoring their importance in liver regeneration.
View Article and Find Full Text PDF

The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI.

View Article and Find Full Text PDF

Convergence of plant sterols and host eukaryotic cell-derived defensive lipids at the infectious pathogen-host interface.

Biochimie

December 2024

Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103, Kiel, Germany.

Plant sterols (PSs) exhibit intrinsic functions such as antibacterial effects. Their effects simultaneously on both host-mediated and bacteria-mediated pathogenesis are not yet fully understood. We hypothesized that when absorptive cells, defensive cells and detoxer cells are cultured together, their convergent response to an infectious pathogen depends on the molecular mimicry between the ingested sterols and their own defensive lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!