A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the psychophysical similarity of faces and non-face complex shapes by image-based measures. | LitMetric

Predicting the psychophysical similarity of faces and non-face complex shapes by image-based measures.

Vision Res

Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Suite 2301, Charlestown, MA 02129, USA.

Published: February 2012

Shape representation is accomplished by a series of cortical stages in which cells in the first stage (V1) have local receptive fields tuned to contrast at a particular scale and orientation, each well modeled as a Gabor filter. In succeeding stages, the representation becomes largely invariant to Gabor coding (Kobatake & Tanaka, 1994). Because of the non-Gabor tuning in these later stages, which must be engaged for a behavioral response (Tong, 2003; Tong et al., 1998), a V1-based measure of shape similarity based on Gabor filtering would not be expected to be highly correlated with human performance when discriminating complex shapes (faces and teeth-like blobs) that differ metrically on a two-choice, match-to-sample task. Here we show that human performance is highly correlated with Gabor-based image measures (Gabor simple and complex cells), with values often in the mid 0.90s, even without discounting the variability in the speed and accuracy of performance not associated with the similarity of the distractors. This high correlation is generally maintained through the stages of HMAX, a model that builds upon the Gabor metric and develops units for complex features and larger receptive fields. This is the first report of the psychophysical similarity of complex shapes being predictable from a biologically motivated, physical measure of similarity. As accurate as these measures were for accounting for metric variation, a simple demonstration showed that all were insensitive to viewpoint invariant (nonaccidental) differences in shape.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2011.12.012DOI Listing

Publication Analysis

Top Keywords

complex shapes
12
psychophysical similarity
8
receptive fields
8
highly correlated
8
human performance
8
similarity
5
complex
5
gabor
5
predicting psychophysical
4
similarity faces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!