Wound management has progressed significantly over the last five decades. This emanates from a greater understanding of wound healing, technological progression and improved clinical and scientific research. There are currently a plethora of absorbent dressings on the wound care market which claim to have the ability to manage exudates whilst encouraging healing. However, it is becoming clear, from analysing randomised controlled trials, that some of these absorbent dressings are not meeting their expectations when applied in a clinical setting. Many clinicians now feel that there should be more focus, not only on a dressing's ability to manage exudate efficiently, but on a dressing's ability to proactively encourage healing and thus exudate reduction will ensue. This paper proposes to critically review modern and emerging absorbent wound care dressings used to manage exuding wounds and discuses some advances in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950558 | PMC |
http://dx.doi.org/10.1111/j.1742-481X.2011.00923.x | DOI Listing |
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
Department of Sports Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650032, P. R. China.
Objective: To investigate the effectiveness of modified single patellar tunnel medial patella femoral ligament (MPFL) reconstruction in the treatment of recurrent patellar dislocation.
Methods: Between January 2023 and June 2023, a total of 61 patients with recurrent patellar dislocation who underwent MPFL reconstruction with autologous semitendinosus were enrolled and divided into 2 groups using random number table method. In the patellar anchor group, 31 patients were treated with MPFL reconstruction with double medial patellar anchors, and 30 patients in the patellar tunnel group were treated with MPFL reconstruction with single patellar tunnel.
Int J Biol Macromol
January 2025
School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Hydrogel dressings with good biocompatibility and extracellular matrix mimetic structure are important for the treatment of skin wounds. In this study, antimicrobial silver nanoparticles (Ag NPs) loaded with konjac glucomannan and silk fibroin (KGM/SF) composite hydrogel were used as a dressing for wound healing. The uniform distribution of Ag NPs on the surface of the hydrogels imparts excellent antibacterial properties to KGM/SF composite hydrogels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
Although tissue engineering science has made great progress, wound healing has remained a significant clinical challenge, especially in cases of severe injuries requiring advanced treatment strategies. This study aimed to develop patient-friendly in situ gelling nanofibers composed of oxidized carboxymethyl cellulose (OCMC) and gelatin for wound healing applications. A two-axial electrospinning technique was employed to fabricate OCMC/PVA-Gelatin hybrid nanofibers.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China.
Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
The management of wound exudate is of vital importance for wound healing. Exudate accumulation around wound prolongs inflammation and hinders healing. Although traditional dressings can absorb wound exudate, they are unable to drain exudate in time, often resulting in a poor feature with wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!