Wide-ranging exploration of potential replacements for a quinoline-based inhibitor of activation of AKT kinase led to number of alternative, novel scaffolds with potentially improved potency and physicochemical properties. Examples showed predictable DMPK properties, and one such compound demonstrated pharmacodynamic knockdown of phosphorylation of AKT and downstream biomarkers in vivo and inhibition of tumor growth in a breast cancer xenograft model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm201394eDOI Listing

Publication Analysis

Top Keywords

diverse heterocyclic
4
heterocyclic scaffolds
4
scaffolds allosteric
4
allosteric inhibitors
4
inhibitors akt
4
akt wide-ranging
4
wide-ranging exploration
4
exploration potential
4
potential replacements
4
replacements quinoline-based
4

Similar Publications

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Cyclic Imines and Their Salts as Universal Precursors in the Synthesis of Nitrogen-Containing Alkaloids.

Int J Mol Sci

December 2024

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia.

Alkaloids are predominantly nitrogen-containing heterocyclic compounds that are usually isolated from plants, and sometimes from insects or animals. Alkaloids are one of the most important types of natural products due to their diverse biological activities and potential applications in modern medicine. Cyclic imines were chosen as starting compounds for the synthesis of alkaloids due to their high synthetic potential.

View Article and Find Full Text PDF

A copper-catalyzed domino addition/cyclization reaction was developed to synthesize novel benzoselenazole-linked 1,2,3-triazole and tetracyclic fused 12-benzo[4,5]selenazole[2,3-]quinazolin-12-one derivatives from isoselenocyanates. This domino reaction efficiently constructed multiple new chemical bonds in a single step, forming either four (one C-Se and three C-) or three (one C-Se and two C-) bonds. The reaction offers several key advantages, including mild conditions, broad substrate compatibility, and straightforward and safe operation.

View Article and Find Full Text PDF

General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized.

View Article and Find Full Text PDF

Cu-Catalyzed Relay Functionalization of Alkenes: Diverse Synthesis of Diazidated Quinazolinones and Polycyclic Imidazoles.

Org Lett

January 2025

Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.

A Cu-catalyzed relay process for the preparation of diazidated quinazolinone and polycyclic imidazole derivatives in which readily available alkene-tethered substrates undergo an addition/cyclization/C(sp)-H functionalization of alkene sequences with high efficiency is described. Various functionalized N-heteropolycyclic compounds were readily prepared in good yields with a broad substrate scope. Moreover, the direct azidation of the α-C(sp)-H bond of the corresponding N-heterocycles has been demonstrated on the basis of mechanistic studies, which provide an alternative late-stage functionalization approach for the derivatization of N-heterocyclic scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!