The interest in monitoring applications using underwater sensor networks has been growing in recent years. The severe communication restrictions imposed by underwater channels make that efficient monitoring be a challenging task. Though a lot of research has been conducted on underwater sensor networks, there are only few concrete applications to a real-world case study. In this work, hence, we propose a general three tier architecture leveraging low cost wireless technologies for acoustic communications between underwater sensors and standard technologies, Zigbee and Wireless Fidelity (WiFi), for water surface communications. We have selected a suitable Medium Access Control (MAC) layer, after making a comparison with some common MAC protocols. Thus the performance of the overall system in terms of Signals Discarding Rate (SDR), signalling delay at the surface gateway as well as the percentage of true detection have been evaluated by simulation, pointing out good results which give evidence in applicability's favour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251986 | PMC |
http://dx.doi.org/10.3390/s111211343 | DOI Listing |
Sci Rep
January 2025
Department of Natural and Engineering Sciences, College of Applied Studies and Community Services, King Saud University, Riyadh, 11543, Saudi Arabia.
Underwater environmental exploration using sensor nodes has emerged as a critical endeavor fraught with challenges such as localization errors, energy, and costs attributed to the dynamic nature of underwater environments. This paper proposes a KNN-based cost-efficient machine-learning algorithm aimed at optimizing underwater context acquisition with sensor nodes. By addressing existing localization challenges, the algorithm minimizes localization errors, energy consumption and Time costs while significantly enhancing localization accuracy to 99.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China.
Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518000, China.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer Science, University of South China, Hengyang 421001, China.
In exploiting large propagation delays in underwater acoustic (UWA) networks, the time-domain interference alignment (TDIA) mechanism aligns interference signals through delay-aware slot scheduling, creating additional idle time for improved transmission at the medium access control (MAC) layer. However, perfect alignment remains challenging due to arbitrary delays. This study enhances TDIA by incorporating power allocation into its transmission scheduling framework across the physical and MAC layers, following the cross-layer design principle.
View Article and Find Full Text PDFSensors (Basel)
December 2024
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
This paper proposes a method for passive detection of autonomous underwater vehicle (AUV) wakes using a cilium-inspired wake sensor (CIWS), which can be used for the detection and tracking of AUVs. First, the characteristics of the CIWS and its working principle for detecting underwater flow fields are introduced. Then, a flow velocity sensor is used to measure the flow velocities of the "TS MINI" AUV's wake at different positions, and a velocity field model of the "TS MINI" AUV's wake is established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!