The cbb(I) region of Rhodopseudomonas palustris (Rp. palustris) contains the cbbLS genes encoding form I ribulose-1,5-bisphosphate (RuBP) carboxylase oxygenase (RubisCO) along with a divergently transcribed regulator gene, cbbR. Juxtaposed between cbbR and cbbLS are the cbbRRS genes, encoding an unusual three-protein two-component (CbbRRS) system that modulates the ability of CbbR to influence cbbLS expression. The nature of the metabolic signals that Rp. palustris CbbR perceives to regulate cbbLS transcription is not known. Thus, in this study, the CbbR binding region was first mapped within the cbbLS promoter by the use of gel mobility shift assays and DNase I footprinting. In addition, potential metabolic coinducers (metabolites) were tested for their ability to alter the cbbLS promoter binding properties of CbbR. Gel mobility shift assays and surface plasmon resonance analyses together indicated that biosynthetic intermediates such as RuBP, ATP, fructose 1,6-bisphosphate, and NADPH enhanced DNA binding by CbbR. These coinducers did not yield identical CbbR-dependent DNase I footprints, indicating that the coinducers caused significant changes in DNA structure. These in vitro studies suggest that cellular signals such as fluctuating metabolite concentrations are perceived by and transduced to the cbbLS promoter via the master regulator CbbR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294837PMC
http://dx.doi.org/10.1128/JB.06418-11DOI Listing

Publication Analysis

Top Keywords

cbbls promoter
12
rhodopseudomonas palustris
8
genes encoding
8
cbbr
8
gel mobility
8
mobility shift
8
shift assays
8
cbbls
7
unraveling regulatory
4
regulatory twist
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!