Mycobacterial plasmid pAL5000 represents a family of plasmids found mostly in the Actinobacteria. It replicates using two plasmid-encoded proteins, RepA and RepB. While BLAST searches indicate that RepA is a replicase family protein, the evolutionary connection of RepB cannot be established, as no significant homologous partner (E < 10(-3)) outside the RepB family can be identified. To obtain insight into the structure-function and evolutionary connections of RepB, an investigation was undertaken using homology modeling, phylogenetic, and mutational analysis methods. The results indicate that although they are synthesized from the same operon, the phylogenetic affinities of RepA and RepB differ. Thus, the operon may have evolved through random breaking and joining events. Homology modeling predicted the presence of a three-helical helix-turn-helix domain characteristic of region 4 of extracytoplasmic function (ECF) σ factors in the C-terminal region of RepB. At the N-terminal region, there is a helical stretch, which may be distantly related to region 3 of σ factors. Mutational analysis identified two arginines indispensable for RepB activity, one each located within the C- and N-terminal conserved regions. Apart from analyzing the domain organization of the protein, the significance of the presence of a highly conserved A/T-rich element within the RepB binding site was investigated. Mutational analysis revealed that although this motif does not bind RepB, its integrity is important for efficient DNA-protein interactions and replication to occur. The present investigation unravels the possibility that RepB-like proteins and their binding sites represent ancient DNA-protein interaction modules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294839PMC
http://dx.doi.org/10.1128/JB.06218-11DOI Listing

Publication Analysis

Top Keywords

mutational analysis
12
repb
10
mycobacterial plasmid
8
plasmid pal5000
8
extracytoplasmic function
8
repa repb
8
homology modeling
8
evolutionary link
4
link mycobacterial
4
pal5000 replication
4

Similar Publications

Pan-Cancer Analysis Identifies YKT6 as a Prognostic and Immunotherapy Biomarker, with an Emphasis on Cervical Cancer.

Onco Targets Ther

January 2025

Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China.

Background: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).

View Article and Find Full Text PDF

Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization.

View Article and Find Full Text PDF

What Is Known About This Topic?: Global human cases of zoonotic influenza A(H5N6) have increased significantly in recent years, primarily due to widespread circulation of clade 2.3.4.

View Article and Find Full Text PDF

Background: Patients with mutant metastatic colorectal cancer (mCRC) have a low incidence rate, poor biological activity, suboptimal response to conventional treatments, and a poor prognosis. In the previous cohort study on mCRC conducted by our team, it was observed that integrated Chinese and Western medicine treatment could significantly prolong the overall survival (OS) of patients with colorectal cancer. Therefore, we further explored the survival benefits in the population with mutant mCRC.

View Article and Find Full Text PDF

The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!