Many zoonotic diseases are caused by rodent-borne viruses. Major fluctuations in the transmission of these viruses have been related to large changes in reservoir host population numbers due to external factors. However, the impact of the pathogen itself on the demography of its reservoir host is often overlooked. We investigated the impact of Puumala virus (PUUV) on survival and reproductive maturation probability of its reservoir host, the bank vole (Myodes glareolus). Three years (2004-06) of data from nine independent sites in southern Belgium were collected and analyzed with a capture-mark-recapture (CMR) method that includes statistical correction for the variation in capture probability of voles. A multistate model based on four states of reproductive activity and PUUV immunoglobulin G (IgG) antibody status was used to estimate survival and probability of transition from one reproductive or infection state to another. Although survival estimates for reproductively active voles were similar between infected and noninfected individuals, PUUV infection in reproductively inactive voles decreased mean monthly survival by 14%. PUUV infection was associated with a threefold increase in the probability of reproductive maturation in bank voles. Moreover, the probability of PUUV IgG seroconversion was three times higher for reproductively active voles compared to reproductively inactive voles. Our model indicates that PUUV infection may alter bank vole population dynamics by affecting both survival and maturation in its host. Additional studies, using CMR methodology with shorter time intervals between trapping sessions and possibly a longer duration, are needed to confirm these findings.

Download full-text PDF

Source
http://dx.doi.org/10.7589/0090-3558-48.1.148DOI Listing

Publication Analysis

Top Keywords

reservoir host
12
puuv infection
12
impact puumala
8
puumala virus
8
bank voles
8
reproductive maturation
8
bank vole
8
reproductively active
8
active voles
8
reproductively inactive
8

Similar Publications

The emergence and global spread of carbapenem-resistant complex species present a pressing public health challenge. Carbapenem-resistant spp. cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults.

View Article and Find Full Text PDF

Cholera, a disease caused by , remains a pervasive public health threat, particularly in regions with inadequate water sanitation and hygiene infrastructure, such as Bangladesh. This review explores the complex interplay between water pollution and cholera transmission in Bangladesh, highlighting how contaminated water bodies serve as reservoirs for . A key focus is the potential role of probiotics as a novel intervention approach for cholera prevention and management.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) is a zoonotic disease in which dogs are the main reservoirs. Until now, the serological tests do not present satisfactory sensitivity for diagnosis of these hosts. One of the functions of extracellular vesicles (EVs) is related to immunological host response.

View Article and Find Full Text PDF

The nutria (Myocastor coypus) is a semiaquatic rodent that originally inhabited South America. However, the animals have spread to different continents as alien species, and their numbers are quickly increasing, especially in North America, Europe, and Eastern Asia including Japan. Although nutrias have been suggested to serve as reservoirs for pathogens, including parasites, there have been few reports on this subject.

View Article and Find Full Text PDF

Congeneric Rodents Differ in Immune Gene Expression: Implications for Host Competence for Tick-Borne Pathogens.

J Exp Zool A Ecol Integr Physiol

January 2025

Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA.

Mice in the genus Peromyscus are abundant and geographically widespread in North America, serving as reservoirs for zoonotic pathogens, including Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease, transmitted by Ixodes scapularis ticks. While the white-footed mouse (Peromyscus leucopus (P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!