Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli.

Appl Environ Microbiol

Department of Biological Sciences and Geology, Queensborough Community College-CUNY, Bayside, New York, USA.

Published: March 2012

Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO(4). In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298164PMC
http://dx.doi.org/10.1128/AEM.07068-11DOI Listing

Publication Analysis

Top Keywords

copper alloy
20
dna degradation
16
tbars levels
12
cells exposed
12
copper
10
lipid peroxidation
8
copper alloy-mediated
8
contact killing
8
killing escherichia
8
escherichia coli
8

Similar Publications

Stable Operation of Copper-Protected La(FeMnSi)H Regenerators in a Magnetic Cooling Unit.

ACS Appl Eng Mater

January 2025

Magnotherm Solutions GmbH, Pfungstädter Straße 102, 64297 Darmstadt, Germany.

Magnetic refrigeration leads the current commercialization efforts of ambient caloric cooling technologies, is considered among its peers most promising in terms of anticipated energy efficiency gain, and allows for complete elimination of harmful coolants. By now, functional magnetocaloric components (so-called regenerators) based on Mn-substituted and hydrogenated LaFeSi alloys are commercially available. However, this alloy system exhibits magnetostriction, is susceptible to fracture, oxidation, and does not passivate well, rendering it prone to failure and corrosion, particularly when using water as favorable heat exchange medium.

View Article and Find Full Text PDF

This research explored the impact of age-hardening treatment on the mechanical response and electrical resistivity of copper-clad AA6063 alloy bimetallic wire, with a focus on microstructural analysis and interface characterization. In this study, AA6063 alloy wire was inserted into an oxygen-free high conductivity copper tube, and a bimetallic wire was fabricated through a wire drawing process that reduced the cross-sectional area in 13 stages. The bimetallic wire underwent a series of thermo-mechanical treatments, including various combinations of wire drawing, solution heat treatment, and artificial aging.

View Article and Find Full Text PDF

Because of their uniform and regular channels, adjustable pore size, large surface area, controllable wall composition, high hydrothermal stability, ease of functional modification, and good accessibility of larger reactant molecules, mesoporous siliceous SBA-15 is of excellent catalyst carrier that is highly versatile and has been used extensively to prepare a variety of supported catalysts with ideal catalytic properties. In this study, we report the synthesis, characterization, and catalytic application of Cu-Ag/ SBA-15 nanoalloy catalysts towards the control of microorganisms in drinking water has been reported. The Cu-Ag/SBA-15 nanoalloy catalysts with different molar mass ratio of copper to silver (Cu:Ag = 1: 0, 0.

View Article and Find Full Text PDF

The ruins of the Imperial City of the Minyue Kingdom were an important site of the Minyue Kingdom during the Han Dynasty. Characteristic bronze arrowheads unearthed from the East Gate, with their exquisite craftsmanship, provide important physical evidence for studying ancient bronze casting technology and the military activities of that time. However, there is still a lack of systematic research on the alloy composition, casting process, and chemical stability of these arrowheads in long-term burial environments.

View Article and Find Full Text PDF

This manuscript highlights the behavior of biodegradable polymers (PLA and HD PLA Green) coated with two distinct bronze alloy powders, Metco 51F-NS (Cu 9.5Al 1.2Fe) and Metco 445 (Cu 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!