Fibroblast growth factor-23 (FGF23) is a phosphate- and vitamin D-regulating hormone derived from osteoblasts/osteocytes that circulates in both active (intact, iFGF23) and inactive (C-terminal, cFGF23) forms. O-glycosylation by O-glycosyl transferase N-acetylgalactosaminyltransferase 3 (ppGalNAcT3) and differential cleavage by furin have been shown to be involved in regulating the ratio of active to inactive FGF23. Elevated iFGF23 levels are observed in a number of hypophosphatemic disorders, such as X-linked, autosomal recessive, and autosomal dominant hypophosphatemic rickets, whereas low iFGF23 levels are found in the hyperphosphatemic disorder familial tumoral calcinosis/hyperphosphatemic hyperostosis syndrome. Fibrous dysplasia of bone (FD) is associated with increased total FGF23 levels (cFGF23 + iFGF23); however, classic hypophosphatemic rickets is uncommon. Our results suggest that it can be explained by increased FGF23 cleavage leading to an increase in inactive cFGF23 relative to active iFGF23. Given the fact that FD is caused by activating mutations in the small G-protein G(s) α that results in increased cyclic adenosine monophosphate (cAMP) levels, we postulated that there may be altered FGF23 cleavage in FD and that the mechanism may involve alterations in cAMP levels and ppGalNacT3 and furin activities. Analysis of blood specimens from patients with FD confirmed that the elevated total FGF23 levels are the result of proportionally increased cFGF23 levels, consistent with less glycosylation and enhanced cleavage by furin. Analysis of primary cell lines of normal and mutation-harboring bone marrow stromal cells (BMSCs) from patients with FD demonstrated that BMSCs harboring the causative G(s) α mutation had higher cAMP levels, lower ppGalNAcT3, and higher furin activity. These data support the model wherein glycosylation by ppGalNAcT3 inhibits FGF23 cleavage by furin and suggest that FGF23 processing is a regulated process that controls overall FGF23 activity in FD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7448291 | PMC |
http://dx.doi.org/10.1002/jbmr.1546 | DOI Listing |
Genes (Basel)
December 2024
Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
Background/objectives: The ectodysplasin A () gene, a member of the tumor necrosis factor ligand superfamily, is involved in the early epithelial-mesenchymal interaction that regulates ectoderm-derived appendage formation. Numerous studies have shown that mutations in the gene can cause X-linked ectodermal dysplasia (ED) and non-syndromic oligodontia (NSO). Accordingly, this study aimed to identify the causative genetic mutations of the gene.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Rapid tissue repair is also needed in the event of damage to blood vessels. Most of the essential steps that prevent us from bleeding to death involve the functions of Von Willebrand factor (VWF) and many of these are dependent on electrical forces.
View Article and Find Full Text PDFProteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.
Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.
Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).
CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!