Viruses continue to pose some of the greatest threats to human and animal health, and food security worldwide. Therefore, new approaches are required to increase our understanding of virus-host cell interactions and subsequently design more effective therapeutic countermeasures. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture (SILAC), coupled to LC-MS/MS and bioinformatic analysis, is providing an excellent resource for studying host cell proteomes and can readily be applied for the study of virus infection. Here, we review this approach and discuss how virus-host cell interactions can best be studied, what is realistically feasible, and the potential limitations. For example, sub-cellular fractionation can reduce sample complexity for LC-MS/MS, increase data return and provide information regarding protein trafficking between different cellular compartments. The key to successful quantitative proteomics combines good experimental design and appropriate sample preparation with statistical analysis and validation of the MS data through the use of independent techniques and functional analysis. The annotation of the human genome and the increasing availability of biological reagents such as antibodies, provide the optimum parameters for studying viruses that infect humans, in human cell lines. SILAC-based quantitative proteomics can also be used to study the interactome of viral proteins with the host cell. Coupling proteomic studies with global transcriptomic and RNA depletion experiments will provide great insights into the complexity of the infection process, and potentially reveal new antiviral targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201100488 | DOI Listing |
Food Chem
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition; College of Food Science and Engineering, Ningbo University, Ningbo 315211, China. Electronic address:
To investigate the mechanism of Rhodotorula mucilaginosa on structural protein degradation and taste development of Jinhua ham, the effects of Rhodotorula mucilaginosa and Pichia kudriavzevii on proteolytic enzyme activities, surface hydrophobicity, myofibril microstructure, protein degradation, free amino acids and sensory attributes were investigated during the dry-ripening of Jinhua ham. The inoculation of Rhodotorula mucilaginosa EIODSF019 (RE) and Rhodotorula mucilaginosa XZY63-3 (RX) consistently exhibited higher proteolytic enzyme activities compared with Pichia kudriavzevii XS-5 (PK). The decrease of α-helix exposing more internal hydrophobic groups of myofibrillar proteins, contributed to higher surface hydrophobicity of RE compared with PK and RX.
View Article and Find Full Text PDFSe Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Medical Experimental Center, The First People's Hospital of Nanning, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
Introduction: Copine-3 (CPNE3) is a conservative calcium-dependent phospholipid-binding protein belonging to the copines protein family. CPNE3 has been implicated in the development and progression of several diseases, including cancer.
Method: Herein, we investigated the molecular mechanisms through which CPNE3 regulates the migration of lung adenocarcinoma (LUAD) cells in vitro.
Am J Hypertens
January 2025
Department of Geriatric Medicine, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China, Fuzhou, 350001, China.
Background: Hypertension (HT) is the most prevalent risk factor for cardiovascular disease (CVD) worldwide. Despite being a highly heritable trait, the underlying mechanisms of HT remain elusive due to its complex genetic architecture. Discovering disease-associated proteins with causal genetic evidence offers a potential strategy for identifying therapeutic targets for HT.
View Article and Find Full Text PDFGenome Biol
January 2025
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
Background: East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!