Effect of lanthanum on rooting of in vitro regenerated shoots of Saussurea involucrata Kar. et Kir.

Biol Trace Elem Res

Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an, China.

Published: June 2012

In present study, the effect of lanthanum (La) on the rooting of regenerated shoots of Saussurea involucrata Kar. et Kir was analyzed. Rooting occurred from regenerated shoots inoculated on a medium supplemented with La, the plant rooting hormone indole-3-acetic acid (IAA), or both La and IAA together. The highest rooting efficiency (96%), root number/shoot (8.5), and root length (63 mm) were recorded in shoots cultured on medium containing 2.5 μM IAA combined with 100 μM La(3+). In order to elucidate the mechanism of rooting enhancement by La, we examined dynamic changes in antioxidant enzyme activities in plant tissue over time in culture. We found that the activities of peroxidase (POX) and superoxide dismutase (SOD) were significantly higher in plant tissue cultured in IAA plus La than in La or IAA alone. At the same time, the highest H(2)O(2) content was detected in plant tissue in the presence of 2.5 μM IAA plus 100 μM La(3+). In light of these data and previous results, we speculate that La enhanced IAA-induced rooting by acting as a mild abiotic stress to stimulate POX and SOD activities in plant cells. Then, IAA reacted with oxygen and POX to form the ternary complex enzyme-IAA-O(2) that dissociated into IAA radicals and O(2)(-). Subsequently, IAA-induced O(2)(-) readily converted to hydroxyl radical (HO·) via SOD-catalyzed dismutation. Finally, cell wall loosening and cell elongation occurred as a consequence of HO-dependent scission of wall components, leading to root growth. The treatment of IAA combined with La resulted in the highest plantlet survival (80%) compared to single treatments with IAA or La alone. These data suggest that rare earth elements enhance root morphogenesis and the growth of S. involucrata.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-012-9326-8DOI Listing

Publication Analysis

Top Keywords

regenerated shoots
12
plant tissue
12
iaa
10
lanthanum rooting
8
shoots saussurea
8
saussurea involucrata
8
involucrata kar
8
kar kir
8
iaa iaa
8
μm iaa
8

Similar Publications

Purpose: Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs.

View Article and Find Full Text PDF

Optimizing In Vitro Propagation of Schönland Using Leaf, Root, and Inflorescence.

Plants (Basel)

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.

, a species native to South Africa, is characterized by its limited growth and scarcity, contributing to high production costs. Countries like China and Turkey are known for exporting globally. Tissue culture offers an efficient method for mass-producing unique and beautiful species such as This study tested Murashige and Skoog (MS) basal media supplemented with various concentrations of IBA (0.

View Article and Find Full Text PDF

Combined Transcriptomics and Metabolomics Uncover the Potential Mechanism of Plant Growth-Promoting Rhizobacteria on the Regrowth of After Mowing.

Int J Mol Sci

January 2025

Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and Technology, Inner Mongolia University, Hohhot 010010, China.

Mowing significantly influences nutrient cycling and stimulates metabolic adjustments in plants to promote regrowth. Plant growth-promoting rhizobacteria (PGPR) are crucial for enhancing plant growth, nutrient absorption, and stress resilience; however, whether inoculation with PGPR after mowing can enhance plant regrowth capacity further, as well as its specific regulatory mechanisms, remains unexplored. In this study, PGPR (B13) was inoculated into mowed to evaluate its effects on phenotypic traits, root nutrient contents, and hormone levels during the regrowth process and to further explore its role in the regrowth of after mowing.

View Article and Find Full Text PDF

Saffron ( L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses.

View Article and Find Full Text PDF

Plants exhibit remarkable regenerative abilities under stress conditions like injury, herbivory, and damage from harsh weather, particularly through adventitious root formation. They have sophisticated molecular mechanisms to recognize and respond to wounding. Jasmonic acid (JA), a wound hormone, triggers auxin synthesis to stimulate root regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!