Biotherapeutic formulation factors affecting metal leachables from stainless steel studied by design of experiments.

AAPS PharmSciTech

Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., St Louis, Missouri 63017, USA.

Published: March 2012

Trace amounts of metals are inevitably present in biotherapeutic products. They can arise from various sources. The impact of common formulation factors such as protein concentration, antioxidant, metal chelator concentration and type, surfactant, pH, and contact time with stainless steel on metal leachables was investigated by a design of experiments approach. Three major metal leachables, iron, chromium, and nickel were monitored by inductively coupled plasma-mass spectrometry. It was observed that among all the tested factors, contact time, metal chelator concentration, and protein concentration were statistically significant factors with higher temperature resulting in higher levels of leached metals. Within a pH range of 5.5-6.5, solution pH played a minor role for chromium leaching at 25°C. No statistically significant difference was observed due to type of chelator, presence of antioxidant, or surfactant. In order to optimize a biotherapeutic formulation to achieve a target drug product shelf life with acceptable quality, each formulation component must be evaluated for its impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299453PMC
http://dx.doi.org/10.1208/s12249-011-9747-2DOI Listing

Publication Analysis

Top Keywords

metal leachables
12
biotherapeutic formulation
8
formulation factors
8
stainless steel
8
design experiments
8
protein concentration
8
metal chelator
8
chelator concentration
8
contact time
8
metal
5

Similar Publications

Co-pyrolysis is an efficient approach for municipal sewage sludge (SS) treatment, facilitating the production of biochar and promoting the stabilization and removal of heavy metals, particularly when combined with chlorinated materials. This study explores the impact of pyrolysis temperatures (400 °C and 600 °C) and chlorinated additives (polyvinyl chloride (PVC) as an organic chloride source and ferric chloride (FeCl) as an inorganic chloride source) at 10% and 20% concentrations, on the yield, chemical speciation, leachability, and ecological risks of arsenic (As), chromium (Cr), and zinc (Zn) in biochar derived from SS. The results revealed that increasing the pyrolysis temperature from 400 to 600 °C significantly reduced biochar yield due to enhanced volatilization of organic components, as well as the removal of heavy metals in interaction with chlorinated materials.

View Article and Find Full Text PDF

At present, contamination due to toxic metals is a global concern. The management of problems caused by heavy metals relies on stabilization/solidification, which is the most effective technique for the control of metal pollution in soil. This study examined the immobilization efficiency of various phosphate-based binders (NaPO, NaHPO, NaHPO), in addition to ordinary Portland cement (OPC), MgO, and CaO, for the stabilization of multi-metal-contaminated soils.

View Article and Find Full Text PDF

Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments.

View Article and Find Full Text PDF

Platinum group metals (PGMs) are increasingly recycled from spent automotive catalysts due to their scarcity in nature. Many studies were developed using different leaching reagents to achieve greener benefits and reduce environmental pollution. This article reports for the first time a direct comparison of leaching reagents on the efficiency of PGMs using microwave (MW) assisted heating.

View Article and Find Full Text PDF

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!