AI Article Synopsis

  • The study explored the use of focussed beam reflectance measurement (FBRM) to track biomass concentration changes in different biological systems, including plant cell cultures and bacteria.
  • FBRM was applied successfully to various organisms, including Morinda citrifolia, Centaurea calcitrapa, Streptomyces natalensis, Escherichia coli, and a murine hybridoma cell line.
  • The correlation between biomass concentration and FBRM counts varied based on factors like particle concentration, type, size, and shape, indicating that different systems respond differently to this measurement technique.

Article Abstract

The potential of focussed beam reflectance measurement (FBRM) as a tool to monitor changes in biomass concentration was investigated in a number of biological systems. The measurement technique was applied to two morphologically dissimilar plant cell suspension cultures, Morinda citrifolia and Centaurea calcitrapa, to a filamentous bacteria, Streptomyces natalensis, to high density cultures of Escherichia coli and to a murine Sp2/0 hybridoma suspension cell line, 3-2.19. In all cases, the biomass concentration proved to be correlated with total FBRM counts. The nature of the correlation varied between systems and was influenced by the concentration, nature, size and morphology of the particle under investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-012-0681-9DOI Listing

Publication Analysis

Top Keywords

biomass concentration
12
focussed beam
8
beam reflectance
8
reflectance measurement
8
measurement fbrm
8
changes biomass
8
fbrm monitoring
4
monitoring changes
4
concentration
4
concentration potential
4

Similar Publications

Background: Aquaculture systems that sporadically depend on antibiotics can contribute to the development of adverse effects on the fish, microbial flora and the environment. This study sought to investigate the impacts of extended oxytetracycline supplementation on the freshwater stinging catfish through a multi-biomarker approach.

Methods: A total of 300 (20 ± 0.

View Article and Find Full Text PDF

In this research, fresh pistachio green shell as an agricultural waste was blended with activated carbon to study the adsorption process of mercury (II) from several aqueous solutions with various concentrations. Central Composite Design under Response Surface Methodology was statistically used to consider the independent variables involving pH, contact time, fresh pistachio green shell powder dosage, initial concentration of mercury (II) and activated carbon dosage effects on the mercury (II) removal. pH of 6.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.

View Article and Find Full Text PDF

Phosphorus in soil mostly exists in complex compounds such as phytic acid, which reduces the effectiveness of phosphorus and limits agricultural production. Phytase has the activity of hydrolyzing phytate into phosphate. The mineralization of phytate in soil by phytase secreted by microorganisms is an effective way to improve the utilization rate of phytate.

View Article and Find Full Text PDF

Guadua angustifolia biochar/TiO composite and biochar as bio-based materials with environmental and agricultural application.

Sci Rep

January 2025

Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.

Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia  Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO  composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO at 450 °C for 1 h for inactivation of E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!