AI Article Synopsis

  • Gastroenteropancreatic neuroendocrine tumors (GEP-NET) currently lack effective treatments, necessitating new therapeutic strategies.
  • The study demonstrated that the Hsp90 inhibitor IPI-504 significantly reduces the growth of GEP-NET cells by inducing cell cycle arrest and apoptosis, primarily through decreased levels of the IGF-1 receptor and related pathways.
  • Combining IPI-504 with other inhibitors (like mTOR or AKT) enhances its anticancer effects, suggesting Hsp90 inhibition could be a promising new approach for treating GEP-NETs.

Article Abstract

Treatment of gastroenteropancreatic neuroendocrine tumors (GEP-NET) is still unsatisfactory and innovative therapeutic approaches are urgently needed. Heat shock protein 90 (Hsp90) is overexpressed in a wide range of tumor types and is an emerging target for the treatment of cancer. However, the potential activity of Hsp90 inhibitors in GEP-NET has not yet been investigated. We studied the antineoplastic activity of the Hsp90 inhibitor IPI-504 on GEP‑NET cells, and characterized its mechanism of action. In human insulinoma (CM) and pancreatic carcinoid (BON) cells IPI-504 induced a dose-dependent growth inhibition by almost 70%. The antiproliferative effect of IPI-504 correlated with a reduction in protein levels of the IGF-1 receptor. Additionally, several proteins of the PI3K/AKT/mTOR pathway, downstream of IGF-1 receptor activation in GEP-NETs, were downregulated as a consequence of Hsp90 inhibition. Combination treatment of IPI-504 with mTOR- or AKT-inhibitors led to additive antiproliferative effects. In addition, effects of IGF-1 receptor tyrosine kinase inhibition were strongly enhanced by IPI-504. Cancer gene expression profiling and FACS analysis revealed that IPI-504 antiproliferative effects were due to both induction of cell cycle arrest and apoptosis. A modified chick chorioallantoic membrane (CAM) assay confirmed the antineoplastic activity of IPI-504 in GEP-NETs in vivo. In conclusion, this study showed that Hsp90 inhibition may be an attractive target for innovative GEP-NET treatment alone or in combination with either IGF-1R or mTOR inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2012.1328DOI Listing

Publication Analysis

Top Keywords

igf-1 receptor
12
heat shock
8
shock protein
8
growth inhibition
8
neuroendocrine tumors
8
activity hsp90
8
antineoplastic activity
8
hsp90 inhibition
8
antiproliferative effects
8
ipi-504
7

Similar Publications

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the Western world. MASLD-associated cirrhosis prevalence is on the rise along with the obesity and metabolic syndrome epidemic. Genetic factors are included in the multi-hit model of MASLD pathogenesis and insulin-like growth factor-1 (IGF-1) has an important role.

View Article and Find Full Text PDF

Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches.

View Article and Find Full Text PDF

Hepatocellular cancer (HCC) therapy is in need for an ideal companion diagnostic. Preclinical experimental studies have identified the insulin receptor (IR) and its synergistic counterpart, the IGF1 receptor (IGF1R), as relevant in HCC development, and the ligands IGF1 and IGF2 have been found to be elevated in HCC. This study aimed to bridge the gap to the clinical setting and explore whether the IR or the IGF1R would be of prognostic significance and would be associated with clinicopathologic parameters in HCC patients.

View Article and Find Full Text PDF

Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.

View Article and Find Full Text PDF

One-week protein restriction (PR) limits ischemia-reperfusion (IR) damages and improves metabolic fitness. Similarly, longer-term calory restriction results in increased lifespan, partly via reduced insulin-like growth factor (IGF)-1. However, the influence of short-term PR on IGF-1 and its impact on IR are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!