Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytochrome c-induced caspase activation by MAPK signalling, identifying a novel mode of apoptotic regulation exerted through Apaf-1 phosphorylation by the 90-kDa ribosomal S6 kinase (Rsk). Recruitment of 14-3-3ɛ to phosphorylated Ser268 impedes the ability of cytochrome c to nucleate apoptosome formation and activate downstream caspases. High endogenous levels of Rsk in PC3 prostate cancer cells or Rsk activation in other cell types promoted 14-3-3ɛ binding to Apaf-1 and rendered the cells insensitive to cytochrome c, suggesting a potential role for Rsk signalling in apoptotic resistance of prostate cancers and other cancers with elevated Rsk activity. Collectively, these results identify a novel locus of apoptosomal regulation wherein MAPK signalling promotes Rsk-catalysed Apaf-1 phosphorylation and consequent binding of 14-3-3ɛ, resulting in decreased cellular responsiveness to cytochrome c.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297998PMC
http://dx.doi.org/10.1038/emboj.2011.491DOI Listing

Publication Analysis

Top Keywords

caspase activation
12
14-3-3ɛ binding
8
binding apaf-1
8
cytochrome c-induced
8
mitochondrial cytochrome
8
cytochrome release
8
mapk signalling
8
apaf-1 phosphorylation
8
cytochrome
7
rsk
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!