Flavonoids exhibit chemopreventive and chemotherapeutic effects. Butein, a bioactive flavonoid isolated from numerous native plants, has been shown to induce apoptosis in human cancer cells. In the current study, the molecular mechanisms of butein action on cell proliferation and apoptosis of neuroblastoma cells were evaluated. Treatment with butein decreased the viability of Neuro-2A neuroblastoma cells in a dose- and time-dependent manner. The dose-dependent nature of butein-induced apoptosis was characterized by an increase in the sub-G1 phase population. Treatment with butein significantly increased intracellular reactive oxygen species (ROS)levels and reduced the Bcl-2/Bax ratio, triggering the cleavage of pro-caspase 3 and poly-(ADP-ribose) polymerase (PARP). Pre-treatment with the antioxidant agent, N-acetyl cysteine (NAC), blocks butein-induced ROS generation and cell death. NAC also recovers butein-induced apoptosis-related protein alteration. In conclusion, butein-triggered neuroblastoma cells undergo apoptosis via generation of ROS, alteration of the Bcl‑2/Bax ratio, and cleavage of pro-caspase 3 and PARP. Our results suggest that butein may serve as a potential therapeutic agent for the treatment of neuroblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583478PMC
http://dx.doi.org/10.3892/or.2012.1632DOI Listing

Publication Analysis

Top Keywords

neuroblastoma cells
16
reactive oxygen
8
oxygen species
8
butein-induced apoptosis
8
apoptosis neuroblastoma
8
treatment butein
8
cleavage pro-caspase
8
apoptosis
5
neuroblastoma
5
cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!