Gallic acid (GA) induces apoptosis in various cancer cell lines. In this study, we investigated the apoptotic activity induced by GA on chronic myeloid leukemia (CML) cell line-K562 and the underlying mechanism. GA reduced the viability of K562 cells in a dose and time dependent manner. GA led to G0/G1 phase arrest in K562 cells by promoting p21 and p27 and inhibiting the levels of cyclin D and cyclin E. Further studies indicated apoptosis with impaired mitochondrial function as a result of deranged Bcl-2/Bax ratio, leakage of cytochrome c and PARP cleavage along with DNA fragmentation and by up-regulating the expression of caspase-3. GA also activated the protein expressions of fatty acid synthase ligand and caspase-8. GA is more effective in imatinib resistant-K562 (IR-K562) cells (IC50 4 μM) than on K562 cells (IC50 33 μM). GA inhibited cyclooxygenase-2 (COX-2) in K562 as well as IR-K562 cells appears to be COX-2 involved in the suppression of growth. Interestingly, GA also inhibited BCR/ABL tyrosine kinase and NF-κB. In conclusion, GA induced apoptosis in K562 cells involves death receptor and mitochondrial-mediated pathways by inhibiting BCR/ABL kinase, NF-κB activity and COX-2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2011.12.018DOI Listing

Publication Analysis

Top Keywords

k562 cells
20
kinase nf-κb
12
gallic acid
8
bcr/abl kinase
8
ir-k562 cells
8
cells ic50
8
ic50 μm
8
cells
7
k562
6
anti-leukemic effects
4

Similar Publications

Background: Chalcones have been described in the literature as promising antineoplastic compounds.

Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).

Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore how asiatic acid (AA) affects the drug resistance in human leukemia cells (K562/ADR) resistant to adriamycin (ADR).
  • AA was found to reduce the resistance of these cells and enhance the effectiveness of ADR, as shown by various assays including CCK-8 and flow cytometry.
  • The results indicated that AA down-regulates the expression of certain proteins related to drug resistance, suggesting a potential mechanism for reversing resistance in these cancer cells.
View Article and Find Full Text PDF

Fucosyltransferase 4 upregulates P-gp expression for chemoresistance via NF-κB signaling pathway.

Biochim Biophys Acta Gen Subj

December 2024

Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:

Article Synopsis
  • Multidrug resistance (MDR) complicates the development of effective chemotherapy, with previous research showing that GnT-III expression decreases chemoresistance and that fucosylation is heightened in resistant cell models.
  • Using advanced techniques like CRISPR/Cas9, this study created a FUT4 knockout cell line to assess how fucosylation affects drug resistance by analyzing various gene expressions and drug response.
  • The findings revealed that knocking out FUT4 lowered P-glycoprotein levels and enhanced drug sensitivity, indicating that FUT4 plays a pivotal role in regulating P-glycoprotein expression through the NF-κB signaling pathway, positioning it as a potential target for overcoming MDR in cancer treatment.
View Article and Find Full Text PDF

This comprehensive study focused on evaluating and selecting seven distinct commercial membranes to develop BTESE/PA membranes. This method effectively facilitated the extraction of cynaroside from the complex composition of peony seed meal. We subsequently conducted a thorough investigation into its biological properties.

View Article and Find Full Text PDF

Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!