Extracellular calcium is crucial for functioning of the epithelial barrier. Compounds that bind calcium, reducing its extracellular levels, have therefore been investigated as mucosal absorption enhancers. However, the conditions under which calcium reduction sufficiently modulates the epithelial barrier to result in meaningful improvements in mucosal drug absorption are unclear. Present work investigated the settings in which calcium depletion leads to optimal epithelial barrier-modulating effects. Using Calu-3 and Caco-2 cell layers and inducing calcium depletion site-specifically (apically, basolaterally or on both sides) we demonstrate that apical calcium removal produces a modest effect on the tight junctions (the extent of the effect being dependent on the duration of apical calcium unavailability), whilst basolateral calcium exhaustion leads to a prominent effect on the epithelial barrier. However, using polyacrylic acid as an example, we show that polymeric calcium-binding agents proposed as mucosal absorption-enhancing excipients alter calcium levels exclusively on the apical side of the epithelium, which explains their modest effect on epithelial barrier modulation (also demonstrated in our work). Therefore the use of calcium-depleting agents, especially those based on macromolecular polymers, is a relatively inefficacious strategy to promote mucosal absorption of macromolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2011.12.146 | DOI Listing |
J Crohns Colitis
January 2025
Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Background And Aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.
Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC.
Immun Inflamm Dis
January 2025
Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong, China.
Purpose: C9orf72 deficiency contributes to severe inflammation in mice. Ulcerative colitis (UC) is a chronic inflammatory disorder with the shortage of clinical success. However, whether C9orf72 is involved in the progression of UC is not fully understood.
View Article and Find Full Text PDFUnited European Gastroenterol J
January 2025
Department of Gastroenterology, CHU Liège, Liège, Belgium.
Background And Aims: Probe-based confocal endomicroscopy (pCLE) allows real-time microscopic visualization of the intestinal mucosa surface layers. Despite remission achieved through anti-tumor necrosis factor or vedolizumab therapy, anomalies in the intestinal epithelial barrier are observed in inflammatory bowel disease (IBD) patients. Our study aimed to assess these abnormalities in non-IBD individuals and compare them with IBD patients in endoscopic remission to identify the associated factors.
View Article and Find Full Text PDFIn Vitro Model
June 2024
In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Swansea University Medical School, Swansea University, Sketty, Wales SA2 8PP UK.
Unlabelled: Owing to increased pressure from ethical groups and the public to avoid unnecessary animal testing, the need for new, responsive and biologically relevant in vitro models has surged. Models of the human alveolar epithelium are of particular interest since thorough investigations into air pollution and the effects of inhaled nanoparticles and e-cigarettes are needed. The lung is a crucial organ of interest due to potential exposures to endogenous material during occupational and ambient settings.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany.
Purpose: For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.
Methods: Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!