Homeobox-containing genes encode a set of transcription factors that have been shown to control spatial patterning mechanisms in bilaterian organism development. The homeobox gene Gbx, included in the EHGbox cluster, is implicated in the development of the nervous system. In this study, we surveyed five different families of Bivalvia for the presence of Gbx genes by means of PCR with degenerate primers. We were able to recover seven Gbx gene fragments from five bivalve species: Solen marginatus, Mimachlamys varia, Venerupis pullastra, Ostrea edulis and Mytilus galloprovincialis (the derived amino acid sequence were designated Sma-Gbx, Cva-Gbx, Vpu-Gbx, Oed-Gbx and Mga-Gbx, respectively). These genes are orthologous to various Gbx genes present in bilaterian genomes. The Gbx genes in four Bivalvia families, namely Solenidae, Veneridae, Ostreidae and Mytilidae, are newly reported here and we also showed additional information of the Gbx genes of Pectinidae. The phylogenetic analyses by neighbour-joining, UPGMA, maximum parsimony and Bayesian analysis clearly indicated that the Gbx sequences formed a well supported clade and assigned these Gbx genes to the Gbx family. These data permit to confirm that the homeodomain of the Gbx family is highly conserved among these five distinct families of bivalve molluscs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2011.12.023 | DOI Listing |
Nat Commun
December 2023
Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus.
View Article and Find Full Text PDFCurr Biol
July 2023
Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA. Electronic address:
During early animal evolution, the emergence of axially polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here, we demonstrate the molecular basis for segment polarization in developing larvae of the sea anemone Nematostella vectensis.
View Article and Find Full Text PDFChemosphere
June 2023
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032, Camerino, MC, Italy. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants (POPs) commonly found in marine environments. Their bioaccumulation can cause harm to aquatic organisms, including invertebrates, particularly during the early stages of embryonic development. In this study, we evaluated, for the first time, the patterns of PAH accumulation in both capsule and embryo of common cuttlefish (Sepia officinalis).
View Article and Find Full Text PDFbioRxiv
January 2023
Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
Unlabelled: During early animal evolution, the emergence of axially-polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here we demonstrate the molecular basis for segment polarization in developing larvae of the pre-bilaterian sea anemone .
View Article and Find Full Text PDFBrief Bioinform
March 2022
Xiamen University, China.
Predicting the response of cancer patients to a particular treatment is a major goal of modern oncology and an important step toward personalized treatment. In the practical clinics, the clinicians prefer to obtain the most-suited drugs for a particular patient instead of knowing the exact values of drug sensitivity. Instead of predicting the exact value of drug response, we proposed a deep learning-based method, named Siamese Response Deep Factorization Machines (SRDFM) Network, for personalized anti-cancer drug recommendation, which directly ranks the drugs and provides the most effective drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!