Metabolic oligosaccharide engineering of Plasmodium falciparum intraerythrocytic stages allows direct glycolipid analysis by mass spectrometry.

Mol Biochem Parasitol

CIHIDECAR, Departamento de Química Orgánica, Pabellón II, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

Published: May 2012

A recent addition to the arsenal of tools for glycome analysis is the use of metabolic labels that allow covalent tagging of glycans with imaging probes. In this work we show that N-azidoglucosamine was successfully incorporated into glycolipidic structures of Plasmodium falciparum intraerythrocytic stages. The ability to tag glycoconjugates selectively with a fluorescent reporter group permits TLC detection of the glycolipids providing a new method to quantify dynamic changes in the glycosylation pattern and facilitating direct mass spectrometry analyses. Presence of glycosylphosphatidylinositol and glycosphingolipid structures was determined in the different extracts. Furthermore, the fluorescent tag was used as internal matrix for the MALDI experiment making even easier the analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2011.12.008DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
falciparum intraerythrocytic
8
intraerythrocytic stages
8
mass spectrometry
8
metabolic oligosaccharide
4
oligosaccharide engineering
4
engineering plasmodium
4
stages allows
4
allows direct
4
direct glycolipid
4

Similar Publications

Background: In moderate-to-high malaria transmission regions, the World Health Organization recommends intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) alongside insecticide-treated bed nets to reduce the adverse consequences of pregnancy-associated malaria. Due to high-grade Plasmodium falciparum resistance to SP, novel treatment regimens need to be evaluated for IPTp, but these increase pill burden and treatment days. The present qualitative study assessed the acceptability of IPTp-SP plus dihydroartemisinin-piperaquine (DP) in Papua New Guinea, where IPTp-SP was implemented in 2009.

View Article and Find Full Text PDF

The clinical development of novel vaccines, injectable therapeutics, and oral chemoprevention drugs has the potential to deliver significant advancements in the prevention of Plasmodium falciparum malaria. These innovations could support regions in accelerating malaria control, transforming existing intervention packages by supplementing interventions with imperfect effectiveness or offering an entirely new tool. However, to layer new medical tools as part of an existing programme, malaria researchers must come to an agreement on the gaps that currently limit the effectiveness of medical interventions for moderate to low transmission settings.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.

View Article and Find Full Text PDF

Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!