The malaria transmission-blocking vaccine (TBV) aims to interfere the development of malaria parasite in the mosquito and prevent further transmission in the community. So far only two TBV candidates have been identified in Plasmodium vivax; ookinete surface proteins Pvs25 and Pvs28. The pvs230 (PVX_003905) is reported as an ortholog of Pfs230, a gametocyte/gamete stage TBV candidate in Plasmodium falciparum, however its candidacy for TBV has never been tested. Therefore here, we have investigated whether Pvs230 can be a TBV candidate using P. vivax samples obtained from Thailand. The mouse antiserum raised against the plasmid expressing CRDs I-IV of Pvs230 detected Pvs230 protein in the lysate of P. vivax gametocyte in western blot analysis under non-reducing condition. From the localization of Pvs230 on the outer most regions of gametocyte in the immunofluorescence assay, it appears that Pvs230 is localized on the surface of gametes. Importantly, the anti-Pvs230 mouse serum significantly reduced the number of P. vivax oocysts developed in the mosquito midgut. Moreover, the polymorphism in Pvs230 CRDs I-IV is limited suggesting that it may not be an impediment for the utilization of Pvs230 as an effective TBV candidate. In conclusion, our results show that Pvs230 is a transmission-blocking vaccine candidate of P. vivax.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2012.01.003 | DOI Listing |
Immunol Res
January 2025
Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India.
In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran. Electronic address:
Recently, there has been significant interest in developing combination adjuvants to achieve efficient vaccines. However, it remains uncertain which combinations of adjuvants could best enhance the immune response to the recombinant antigen. In the current study, to improve the immunogenicity of Plasmodium falciparum cell traversal protein for ookinetes and sporozoites (PfCelTOS), we tested three different adjuvants: MPL, Poly I:C, and QS-21 alone or in a triple mixture (MPL/Poly I:C/QS-21; MPQ) and a dual mixture (Poly I:C/QS-21; PQ).
View Article and Find Full Text PDFNat Commun
January 2025
Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
Plasmodium, the causative agents of malaria, are obtained by mosquitoes from an infected human. Following Plasmodium acquisition by Anopheles gambiae, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT) plays a critical role in its subsequent sporogony in the mosquito. A critical location for this development is the midgut, a tissue we show expresses mosGILT.
View Article and Find Full Text PDFVaccine
January 2025
Department of Global Health, George Washington University, Washington, D.C., USA. Electronic address:
Transmission-blocking vaccines (TBVs) targeting sexual-stage antigens represent a critical tool for malaria control and elimination through inhibiting parasite development within mosquitoes. P230, displayed on the surface of gametocytes and gametes, plays a crucial role in gamete fertilization and is one of the leading TBV candidates for both Plasmodium falciparum and P. vivax.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany.
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!