Eighteen months of 7-hourly analyses of rainfall and stream water chemistry are presented, spanning a wide range of chemical determinands and building on over 20 years of weekly records for the moorland headwaters of the river Severn. The high-frequency time series data show that hydrochemical responses to major hydrological and biological drivers of short-term variability in rainfall and rivers are not captured by conventional low-frequency monitoring programmes. A wealth of flow related, flow independent, diurnal, seasonal and annual fluctuations indicate a cacophony of interactions within the catchment and stream. The complexity of the chemical dynamics is visually obvious, although there appears to be no clear way of translating this complexity into a simple algorithm. The work provides a proof of concept for the complex structure of catchment functioning revealed by extensive high-frequency measurements coupled with high analytical sensitivity and reproducibility. It provides new insights into hydrogeochemical functioning and a novel resource for catchment modelling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2011.10.072DOI Listing

Publication Analysis

Top Keywords

time series
8
high-frequency water
4
water quality
4
quality time
4
series precipitation
4
precipitation streamflow
4
streamflow fragmentary
4
fragmentary signals
4
signals scientific
4
scientific challenge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!