A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Topological sub-structural molecular design approach: radical scavenging activity. | LitMetric

Topological sub-structural molecular design approach: radical scavenging activity.

Eur J Med Chem

Cátedra de Ingeniería y Toxicología Ambiental, Universidad Católica San Antonio, Guadalupe, Murcia, Spain.

Published: March 2012

In the last decades phenolic compounds have gained enormous interest because of their beneficial health effects such as anti-inflammatory, anticancer, or antiviral activities. The pharmacological effects of phenolic compounds are mainly due to their antioxidant activity and their inhibition of certain enzymes. This antoxidant activity is related to the structure and has been extensively reported throught SAR or QSAR models. These studies confirmed that the number and position of hydroxyl groups, the related glycosylation and other substitutions in the phenolic ring largely determined radical scavenging activity. Most of these models are based on certain families of chemicals (flavonoids, cinnamic acids, etc…) and the model by itself is not useful for other substances of a different family. In this study we developed a QSAR model for a heterogeneous group of substances with TOPS-MODE descriptors for an interpretation of the antioxidant activity of these compounds in the form of bond contributions. The model developed, able to describe more than 90% of the variance in the experimental activity, also has a good predictive ability and stability. The information extracted from the QSAR model revealed that the major driving forces for radical scavenging activity are hydrogen bond donation and polarity. With this work we have managed to unify the different families of antioxidants in a single model with sufficient capacity to make predictions of radical scavenging activity for unknown substances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2011.12.030DOI Listing

Publication Analysis

Top Keywords

radical scavenging
16
scavenging activity
16
activity
8
phenolic compounds
8
antioxidant activity
8
qsar model
8
model
5
topological sub-structural
4
sub-structural molecular
4
molecular design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!