Purpose: Lymphatic disorders are poorly understood with few animal models. We designed a novel assay to measure lymphatic development using transgenic zebrafish with fluorescently labeled endothelial cells. Two major branches of the vascular endothelial growth factor receptor (VEGFR) signaling pathway were examined: the MAPK and PI3K pathways.

Methods: Direct visualization of lymphatic development was performed in control embryos or under chemical inhibition. Treatment involved a 6-hour pulse of inhibitor at 3 days postfertilization. Fish were analyzed for the presence of the thoracic duct (TD) at 4 days postfertilization (n > 100 specimens).

Results: Thoracic duct formation was prevented using selective inhibitors against kinases (MAPK, PI3K/TOR, or VEGFR). These kinases were important for TD formation because the lymphatic vessel failed to form in most of treated animals. Remarkably, MAPK pathway inhibition most robustly reduced lymphangiogenesis, demonstrated by a lack of lymphatic endothelial cells.

Conclusion: We conclude that MAPK pathway function downstream of the VEGFRs is crucial at the early stages of TD development. This study provides a novel animal model and a potential target pathway for further investigation. We suggest further examination of MAPK pathway deregulation as a potential mechanism underlying lymphatic disease in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662220PMC
http://dx.doi.org/10.1016/j.jpedsurg.2011.10.035DOI Listing

Publication Analysis

Top Keywords

mapk pathway
12
lymphatic development
8
days postfertilization
8
thoracic duct
8
mapk
6
lymphatic
6
pathway
5
novel zebrafish
4
zebrafish model
4
model reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!