Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the probability distribution of the pseudocritical temperature in a mean-field and in a short-range spin-glass model: the Sherrington-Kirkpatrick and the Edwards-Anderson (EA) model. In both cases, we put in evidence the underlying connection between the fluctuations of the pseudocritical point and the extreme value statistics of random variables. For the Sherrington-Kirkpatrick model, both with Gaussian and binary couplings, the distribution of the pseudocritical temperature is found to be the Tracy-Widom distribution. For the EA model, the distribution is found to be the Gumbel distribution. Being the EA model representative of uniaxial magnetic materials with quenched disorder like Fe(0.5)Mn)0.5)TiO(3) or Eu(0.5)Ba(0.5)MnO(3), its pseudocritical point distribution should be a priori experimentally accessible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.107.275701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!