Small mesh size hydrogel for functional photocontrol of encapsulated enzymes and small probe molecules.

Anal Chem

Graduate School of Pharmaceutical Sciences and Global COE Program, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan.

Published: February 2012

Previously, we developed the "protein activation and release from cage by external light" (PARCEL) method for controlling the function of proteins by encapsulating them in a photodegradable hydrogel and subsequently releasing them by ultraviolet (UV) irradiation of the gel. However, controlling small proteins is difficult because small proteins can leak from the gap (ca. 12.4 nm) of the mesh structure of the hydrogel without irradiation. Here, we developed a photodegradable gel with a smaller mesh size (~3.6 nm) and used the new gel to control the function of three small enzymes (trypsin, chymotrypsin, and elastase) and several small nonprotein molecules. The new gel showed reduced leakage of the proteins without irradiation, and tryptic activity increased approximately 78-fold upon irradiation of gel-encapsulated trypsin. The new gel also permitted encapsulation and release of 4',6-diamidino-2-phenylindole (DAPI, molecular weight 277), a small DNA-specific fluorescent probe. After irradiation to the gel-encapsulated DAPI and subsequent addition of DNA, strong fluorescence of the DAPI-DNA complex was observed. Our results indicate that reducing the gel mesh size from 12.4 to 3.6 nm should allow the encapsulation of various proteins and small molecules in an inactive state and their subsequent light-induced release. We expect this method to be useful in preparation of photoactivated biosensors, drug delivery systems, and catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac2023603DOI Listing

Publication Analysis

Top Keywords

mesh size
12
small
8
small proteins
8
irradiation gel-encapsulated
8
gel
6
proteins
5
irradiation
5
small mesh
4
size hydrogel
4
hydrogel functional
4

Similar Publications

Short-term outcomes of mesh-suture repair in the treatment of ventral hernias: a single-center study.

Surg Endosc

January 2025

Division of Minimally Invasive and Bariatric Surgery, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA, 17033, USA.

Background: Defect closure with mesh suture is a novel technique for hernia repair. Originally described as the construction of lightweight macroporous polypropylene mesh strips as a suture material, it is now available as an FDA-approved product. Mesh suture better distributes tensile forces and reduces fascial tearing compared to traditional suture but requires less implanted material and tissue dissection compared to planar mesh.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone.

Pharmaceutics

January 2025

Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.

: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.

View Article and Find Full Text PDF

'Ship-in-a-Bottle' Integration of pH-Sensitive 3D Proteinaceous Meshes into Microfluidic Channels.

Nanomaterials (Basel)

January 2025

Innovative Laser Processing Group, Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Ibaraki, Japan.

Microfluidic sensors incorporated onto chips allow sensor miniaturization and high-throughput analyses for point-of-care or non-clinical analytical tools. Three-dimensional (3D) printing based on femtosecond laser direct writing (fs-LDW) is useful for creating 3D microstructures with high spatial resolution because the structures are printed in 3D space along a designated laser light path. High-performance biochips can be fabricated using the 'ship-in-a-bottle' integration technique, in which functional microcomponents or biomimetic structures are embedded inside closed microchannels using fs-LDW.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!