Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amelogenin is essential for proper enamel formation. The present in vitro study extends our previous work at low (10 mM) ionic strength (IS) by examining the effect of amelogenin on mineralization under higher (162 mM) IS conditions found in developing enamel. Full-length phosphorylated (P173) and non-phosphorylated (rP172) amelogenins were examined, along with P148 and rP147 that lack the hydrophilic C-terminus. Calcium phosphate formation was assessed by pH change, while the minerals formed were characterized using transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy. Amelogenin self-assembly was also studied using dynamic light scattering and TEM. The results indicate that IS does not influence the effects of rP147, rP172, and P173 on mineralization. However, in contrast to the findings for low IS, where both P173 and P148 stabilize initially formed amorphous calcium phosphate (ACP) nanoparticles for >1 d, elongated hydroxyapatite crystals were observed after 24 h using P148 at high IS, unlike that seen with P173. Differences in self-assembly help explain these findings, which suggest that P173 and P148 may play different roles in regulating enamel mineral formation. The present data support the notion that proteolytic processing of P173 is required in vivo to induce the transformation of initial ACP phases to apatitic enamel crystals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448280 | PMC |
http://dx.doi.org/10.1111/j.1600-0722.2011.00911.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!