The biomineralization of human dental enamel has resulted in a highly anisotropic and heterogeneous distribution of hydroxyapatite crystallites, which in combination with its high mineral content has resulted in one of the most durable and hardest tissues in the human body. In this study, we used position-sensitive synchrotron X-ray diffraction to quantify the spatial variation in the direction and magnitude of the preferred orientation of enamel crystallites across a whole tooth crown. Two-dimensional synchrotron X-ray diffraction images were collected with 300 μm spatial resolution over a series of six sequential tooth sections obtained from a single maxillary first premolar and were analyzed using Rietveld refinement. Both the magnitude and the direction of the crystallite orientation were found to have a high spatial heterogeneity. Areas of high crystallite alignment were directed perpendicular to the biting surfaces, which is thought to meet the functional requirements of mastication. The results may assist in our understanding of the structure-function relationship and of the evolutionary development of enamel.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0722.2011.00909.xDOI Listing

Publication Analysis

Top Keywords

synchrotron x-ray
12
x-ray diffraction
12
crystallite orientation
8
tooth crown
8
distribution enamel
4
enamel crystallite
4
orientation entire
4
entire tooth
4
crown studied
4
studied synchrotron
4

Similar Publications

This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.

View Article and Find Full Text PDF

Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

J Assoc Res Otolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).

View Article and Find Full Text PDF

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF

Solar-driven production of renewable chemicals via biomass hydrogenation with green methanol.

Nat Commun

January 2025

School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.

Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO supported Cu single-atom catalyst with a four-coordinated Cu-O structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential.

View Article and Find Full Text PDF

Simulations of the Potential for Diffraction Enhanced Imaging at 8 keV using Polycapillary Optics.

Biomed Phys Eng Express

January 2025

Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.

Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!