Introduction: Hedgehog (Hh) signaling pathway plays key roles in embryonic development, formation and maintenance of cancer stem cells (CSCs) and acquisition of epithelial-to-mesenchymal transition (EMT). Since CSCs and EMT are important biological factors responsible for cancer cell invasion, metastasis, drug resistance and tumor recurrence, the Hh signaling pathway is believed to be an important target for cancer therapy.

Areas Covered: In recent years, small-molecule inhibitors of Hh signaling have been synthesized for cancer treatment. Clinical trials using these inhibitors are being conducted to determine their toxicity profiles and efficacies. In addition, nutraceuticals (such as isoflavones, curcumin, vitamin D, etc) have been shown to inhibit cancer growth through downregulation of Hh signaling.

Expert Opinion: Inhibition of Hh signaling is important for suppression of cancer growth, invasion, metastasis and recurrence in cancer therapy. However, targeting only one molecule in Hh signaling may not be sufficient to kill cancer cells because cancers show deregulation of multiple signals. Therefore, utilizing new technologies to determine alterations in Hh and other signals for individuals and designing combination strategies with small-molecule Hh inhibitors, nutraceuticals and other chemotherapeutics in targeted personalized therapy could have a significant effect on improving the overall survival of patients with cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14728222.2011.617367DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
cancer
9
hedgehog signaling
8
cancer therapy
8
invasion metastasis
8
small-molecule inhibitors
8
cancer growth
8
signaling
6
targeting hedgehog
4
pathway cancer
4

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!