Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We performed molecular dynamics simulations to investigate hydrophobic interactions between two parallel hydrophobic plates immersed in water. The two plates are separated by a distance D ranging from contact to a few nanometers. To mimic the attractive hydrophobic force measurement in a surface force experiment, a driving spring is used to measure the hydrophobic force between two hydrophobic plates. The force-distance curves, in particular the force variations from spontaneous drying to hydrophobic collapse are obtained. These details are usually not accessible in the surface force measurement due to the unstable jump into contact. The length-scale effect on the hydrophobic drying during normal approach and the hydrophobic hysteresis during retraction has been studied. We find that the critical distance at which a spontaneous drying occurs is determined by the shorter characteristic dimension of the plate, whereas the hydrophobic hysteresis is determined by the longer characteristic dimension of the plate. The variations of the potential of mean force versus separation during approach and retraction are also calculated. The results show that water confined between two parallel hydrophobic plates is in a thermodynamic metastable state. This comparably high energy state leads to the spontaneous drying at some critical distance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la203646f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!