The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating local repair and regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3248467 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1002424 | DOI Listing |
PLoS Negl Trop Dis
December 2024
Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.
Background: Bothrops venom consists primarily of metalloproteinase and phospholipase A2 toxins, which are responsible for the acute inflammatory, coagulant and hemorrhagic action following snakebite. The local effects of snakebite envenomation by Bothrops species are particularly prevalent yet poorly studied, but include pain, edema, erythema, blistering, bleeding, and ecchymosis.
Methods And Findings: In this study, we describe the dermatopathological findings observed in a series of 22 patients diagnosed with Bothrops envenomation treated in a tertiary hospital of Manaus, in the Brazilian Amazon.
ACS Appl Bio Mater
December 2024
Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi Province 710069, China.
In this study, we designed a fusion protein, rhCR, by combining human collagen with the self-assembling peptide RADA-16 using genetic engineering technology. The rhCR protein was successfully expressed in . The rhCR can self-assemble into a three-dimensional nanofiber network under physiological conditions.
View Article and Find Full Text PDFEar Nose Throat J
December 2024
Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
To investigate the effect of Keystone Design Perforator Island Flap (KDPIF) in the repair of maxillofacial soft tissue defect. From June 2021 to June 2023, 16 patients with soft tissue defects caused by resection of maxillofacial tumor repaired by KDPIF were selected. Variants of KDPIF were designed according to the area of the defect, and the incision was parallel to the wrinkle as far as possible in the same facial cosmetic subunit.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
Red grapes contain resveratrol (Resv), a polyphenol with anti-inflammatory, anti-diabetic, and anticancer properties. In this study, in silico molecular docking was used to assess the binding affinity of Resv to target proteins. Resv was encapsulated in PEGylated liposomes (LNPs) using Phospholipon 90G, cholesterol, and DSPE-mPEG.
View Article and Find Full Text PDFStem Cells Int
December 2024
Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
Burns are a global public health issue and a major cause of disability and death around the world. Stem cells, which are the undifferentiated cells with the potential for indefinite proliferation and multilineage differentiation, have the ability to replace injured skin and facilitate the wound repair process through paracrine mechanisms. In light of this, the present study aims to conduct a bibliometric analysis in order to identify research hotspots of stem cell-related burns and assess global research tendencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!