Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, amorphous solid dispersion (ASD) formulations of tranilast (TL) with 8 hydrophilic polymers were prepared by a solvent evaporation method with the aim of improving dissolution behavior in gastric fluid and thereby enhancing oral bioavailability. The physicochemical properties were characterized with a focus on morphology, crystallinity, thermal behavior, dissolution, drug-polymer interaction, and stability. Of all TL formulations, ASD formulation with Eudragit EPO exhibited the highest improvement in dissolution behavior with a 3,000-fold increase in the first-order dissolution rate under acidic conditions (pH 1.2). Spectroscopic studies using infrared and near-infrared analyses revealed the drug-polymer interaction in the Eudragit EPO-based ASD formulation. On the basis of dissolution, crystallinity, and stability data, the maximum allowable drug load in the Eudragit EPO-based ASD formulation was deduced to be ca. 50%. Pharmacokinetic profiling of orally dosed TL formulations in rats was also carried out using UPLC/ESI-MS. After oral administration of the Eudragit EPO-based ASD formulation in rats, enhanced TL exposure was observed with an increase of oral bioavailability by 19-fold, and the variation of AUC was ca. 4 times lower than that with crystalline TL. With these data, the ASD approach could be a viable formulation strategy for enhancing the wettability and oral bioavailability of TL, resulting in improved therapeutic potential of TL for the treatment of inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2133/dmpk.dmpk-11-rg-101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!