For cell and tissue localization of drugs, receptor microscopic autoradiography is reviewed, including its development history, multiple testing, extensive applications and significant discoveries. This sensitive high-resolution imaging method is based on the use of radiolabeled compounds (esp. tagged with (3)H or (125)I), preservation through freezing of in vivo localization of tissue constituents, cutting thin frozen sections, and close contact with the recording nuclear emulsion. After extensive testing of the utility of this method, the distribution of radiolabeled compounds has been identified and characterized for estradiol, progestagens, adrenal steroids, thyroid hormone, ecdysteroids, vitamin D, retinoic acid, metabolic indicators glucose and 2-deoxyglucose, as well as extracellular space indicators. Target cells and associated tissues have been characterized with special stains, fluorescing compounds, or combined autoradiography-immunocytochemistry with antibodies to dopamine-beta-hydroxylase, GABA, enkephalin, specific receptor proteins, or other cellular products. Blood-brain barrier and brain entries via capillary endothelium, ependyma, or circumventricular recess organs have been visualized for (3)H-dexamethasone, (210)Pb lead, and (3)H-1,25(OH)(2) vitamin D(3). With this histopharmacologic approach, cellular details and tissue integrative overviews can be assessed in the same preparation. As a result, information has been gained that would have been difficult or impossible otherwise. Maps of brain drug distribution have been developed and relevant target circuits have been recognized. Examples include the stria terminalis that links septal-amygdaloid-thalamic-hypothalamic structures and telencephalic limbic system components which extend as the periventricular autonomic-neuroendocrine ABC (Allocortex-Brainstem-Circuitry) system into the mid- and hindbrain. Discoveries with radiolabeled substances challenged existing paradigms, engendering new concepts and providing seminal incentives for further research toward understanding drug actions. Most notable are discoveries made during the 1980s with vitamin D in the brain together with over 50 target tissues that challenged the century-old doctrine of vitamin D's main role as 'the calcitropic hormone', when the new data made it apparent that the main biological function of this multifunctional sunshine hormone rather is maintenance of life and adapting vital functions to the solar environment. In the brain, vitamin D, in close relation to sex and adrenal steroids, participates in the regulation of the secretion of neuro-endocrines, such as, serotonin, dopamine, nerve growth factor, acetyl choline, with importance in prophylaxis and therapy of neuro-psychiatric disorders. Histochemical imaging with high cellular-subcellular resolution is necessary for obtaining detailed information, as this review indicates. New spectrometric methods, like MALDI-MSI, are unlikely to furnish the same information as receptor microautoradiography does, but can provide important correlative molecular information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.proghi.2011.12.001DOI Listing

Publication Analysis

Top Keywords

receptor microscopic
8
microscopic autoradiography
8
radiolabeled compounds
8
adrenal steroids
8
vitamin
5
drugs brain--cellular
4
brain--cellular imaging
4
receptor
4
imaging receptor
4
autoradiography cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!