In mammalian cells aerobic oxidation of glucose requires reducing equivalents produced in glycolytic phase to be channelled into the phosphorylating respiratory chain for the reduction of molecular oxygen. Data never presented before show that the oxidation rate of exogenous NADH supported by the malate-aspartate shuttle system (reconstituted in vitro with isolated liver mitochondria) is comparable to the rate obtained on activation of the cytosolic NADH/cytochrome c electron transport pathway. The activities of these two reducing equivalent transport systems are independent of each other and additive. NADH oxidation induced by the malate-aspartate shuttle is inhibited by aminooxyacetate and by rotenone and/or antimycin A, two inhibitors of the respiratory chain, while the NADH/cytochrome c system remains insensitive to all of them. The two systems may simultaneously or mutually operate in the transfer of reducing equivalents from the cytosol to inside the mitochondria. In previous reports we suggested that the NADH/cytochrome c system is expected to be functioning in apoptotic cells characterized by the presence of cytochrome c in the cytosol. As additional new finding the activity of reconstituted shuttle system is linked to the amount of α-ketoglutarate generated inside the mitochondria by glutamate dehydrogenase rather than by aspartate aminotransferase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2011.12.021 | DOI Listing |
Poult Sci
December 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Spermatozoa cryopreservation has been widely used for animal genetic conservation. Despite advances in chicken semen cryopreservation, the mechanism of spermatozoa cryodamage remains to be revealed. The cryopreservation process induces motion parameter decreased, structure damaged, proteomic and antioxidant system remodeled in spermatozoa.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA. Electronic address:
Bioenergetic preferences of osteolineage cells, including osteoprogenitors and osteoblasts (OBs), are a matter of intense debate. Early studies pointed to OB reliance on glucose and aerobic glycolysis while more recent works indicated the importance of glutamine as a mitochondrial fuel. Aiming to clarify this issue, we performed metabolic tracing of C-labeled glucose and glutamine in human osteolineage cells: bone marrow stromal (a.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
Citrin belongs to the SLC25 transport protein family found mostly in inner mitochondrial membranes. The family prototype, the ADP-ATP carrier, delivers ATP made inside mitochondria to the cellular cytoplasm and returns ADP to the mitochondrion for resynthesis of ATP. In pre-genomic 1981, I noticed that the protein sequence of the bovine ADP-ATP carrier consists of three related sequences, each containing two transmembrane α-helices traveling in opposite senses.
View Article and Find Full Text PDFSemin Arthritis Rheum
November 2024
Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Background: Rheumatoid Arthritis is a systemic autoimmune disease affecting 0.5-1 % of the population. Despite a growing therapeutic armamentarium, RA remains incurable, and many patients suffer significant morbidity over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!