Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To mimic photolyase for efficient repair of UV-damaged DNA, numerous biomimetic systems have been synthesized, but all show low repair efficiency. The molecular mechanism of this low-efficiency process is still poorly understood. Here we report our direct mapping of the repair processes of a flavin-thymine dimer adduct with femtosecond resolution. We followed the entire dynamic evolution and observed direct electron transfer (ET) from the excited flavin to the thymine dimer in 79 ps. We further observed two competitive pathways, productive dimer ring splitting within 435 ps and futile back-ET in 95 ps. Our observations reveal that the underlying mechanism for the low repair quantum yield of flavin-thymine dimer adducts is the short-lived excited flavin moiety and the fast dynamics of futile back-ET without repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269208 | PMC |
http://dx.doi.org/10.1021/ja2112788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!