RNA-based vaccines represent an interesting immunization modality, but suffer from poor stability and a lack of efficient and clinically feasible delivery technologies. This study evaluates the immunogenic potential of naked in vitro transcribed Semliki Forest virus replicon RNA (RREP) delivered intradermally in combination with electroporation. Replicon-immunized mice showed a strong cellular and humoral response, contrary to mice immunized with regular mRNA. RREP-elicited induction of interferon-γ secreting CD8+ T cells and antibody responses were significantly increased by electroporation. CD8+ T cell responses remained substantial five weeks post vaccination, and antigen-specific CD8+ T cells with phenotypic characteristics of both effector and central memory cells were identified. The immune response during the contraction phase was further increased by a booster immunization, and the proportion of effector memory cells increased significantly. These results demonstrate that naked RREP delivered via intradermal electroporation constitute an immunogenic, safe and attractive alternative immunization strategy to DNA-based vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251598PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029732PLOS

Publication Analysis

Top Keywords

intradermal electroporation
8
replicon rna
8
rrep delivered
8
cd8+ cells
8
memory cells
8
electroporation naked
4
naked replicon
4
rna elicits
4
elicits strong
4
strong immune
4

Similar Publications

Plasmid DNA Delivery into the Skin via Electroporation with a Depot-Type Electrode.

Pharmaceutics

September 2024

Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan.

Non-viral mediated plasmid DNA transfection by electroporation (EP) is an established method for gene transfection. In this study, the usefulness of direct EP at an intradermal () site () with implanted electrodes to achieve a high protein expression level was investigated. In addition, application with various intervals with a low application voltage was also evaluated to confirm its effect on protein expression.

View Article and Find Full Text PDF

Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice.

View Article and Find Full Text PDF

A novel DNA vaccine encoding the SRS13 protein administered by electroporation confers protection against chronic toxoplasmosis.

Vaccine

October 2024

Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye; Ege University, Faculty of Medicine, Department of Parasitology, İzmir, Türkiye.

Toxoplasma gondii is an obligate intracellular parasite that can infect a variety of mammals including humans and causes toxoplasmosis. Unfortunately, a protective and safe vaccine against toxoplasmosis hasn't been developed yet. In this study, we developed a DNA vaccine encoding the SRS13 protein and immunized BALB/c mice thrice with pVAX1-SRS13 through the intramuscular route (IM) or intradermally using an electroporation device (ID + EP).

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles.

View Article and Find Full Text PDF

Intradermal delivery of DNA vaccines via electroporation (ID-EP) has shown clinical promise, but the use of needle electrodes is typically required to achieve consistent results. Here, delivery of a DNA vaccine targeting the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is achieved using noninvasive intradermal vacuum-EP (ID-VEP), which functions by pulling a small volume of skin tissue into a vacuum chamber containing noninvasive electrodes to perform EP at the injection site. Gene expression and immunogenicity correlated with EP parameters and vacuum chamber geometry in guinea pigs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!