A two-photon excitation difluoroboron dye activated in the near infrared region for biological image analysis was synthesized in this study. Cell affinity, membrane interaction, and the endocytosis pathway of PAMAM dendrons were investigated using only covalent two-photon dyes (TPD) at the periphery of the PAMAM dendrons. Generation 3 TPD-labeled PAMAM dendrons (BG3) exhibited multivalency binding on the HeLa cell membranes from the cell affinity study in the fixation of HeLa cells. Photo-stimulation on the membrane of the living HeLa cell was observed by confocal optical imaging in situ, using the two-photon model, when incubated with BG3. Analyses of cell membrane integrity via lactate dehydrogenase (LDH) assay confirmed membrane damage at two photon excitation model. However, no variation in the cell was observed using the one-photon excitation model. These results indicated a high degree of dendrons uptake by cells through binding to the cell membrane following the endocytotic pathway. Furthermore, the wide excitation fluorescence spectrum of difluoroboron dye provides dual imaging with which to study the endocytosis of TPD-labeled PAMAM dendrons using a single near infrared laser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.33283 | DOI Listing |
Front Cell Dev Biol
January 2025
College of Medicine, Central Michigan University, Mount Pleasant, MI, United States.
Introduction: Ischemic stroke is a devastating neurovascular condition that occurs when cerebral tissue fails to receive an adequate supply of oxygen. Despite being a leading cause of death and disability worldwide, therapeutic interventions are currently limited. Polyamidoamine (PAMAM) dendrimers are nanomolecules commonly used in biomedical applications due to their ability to encapsulate small-molecules and improve their pharmacokinetic properties.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
Cyclophosphamide has a certain therapeutic effect on treating systemic sclerosis (SSc), while difficulties exist in controlling severe systematic side effects and enhancing targeting capacity. Here, inspired from the natural extracellular matrix composition, we propose a cyclophosphamide-encapsulated nanogel based on dendritic polymers polyamidoamine (PAMAM) for SSc treatment. We combine bovine serum albumin and generation 5 (G5) PAMAM dendrimers with polyphenol modification to obtain nanogels featured with antioxidant and anti-inflammatory effects.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemical Process Fundamentals Czech Academy of Sciences, Rozvojová 135, Prague 165 02, Czech Republic.
Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types.
View Article and Find Full Text PDFSci Rep
January 2025
Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
Zwitterionic polymers exhibit strong hydration, high biocompatibility, and antifouling properties. Dendrimers are regularly branched polymers, which are used in the drug delivery system (DDS). In this study, we synthesized zwitterionic monomer- and polymer-conjugated dendrimers as a biocompatible nanoparticle to investigate the relation between the hydration property and biodistribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!