We have shown before that subjects exposed to a changed gravitoinertial environment produce exaggerated manual forces. From the observed pattern of findings, we argued that initial forces were exaggerated because of abnormal vestibular activity and peak forces because of degraded proprioceptive feedback. If so, only peak but not initial forces should be affected by water immersion, an environment that influences proprioceptive feedback but not vestibular activity. The present study was undertaken to scrutinize this prediction. Twelve subjects sat in a chair once immersed in water and once on dry land, while producing pre-trained isometric forces with a joystick. In a control experiment, subjects performed a four-choice reaction-time task. During the joystick task, produced initial forces were comparable in water and on land, while peak (+24%) and end forces (+22%) were significantly higher in water, as was their reaction time (+6%). During the control task, reaction time was comparable in water and on land. Our findings corroborate the above notion that initial forces increase when the vestibular system is stimulated (gravitoinertial change, visual field motion, but not water immersion), while peak forces increase when proprioceptive feedback is degraded (probably all three scenarios) and are not corrected until response end. Our findings further confirm the absence of cognitive slowing in simple-choice reaction tasks under shallow-water immersion conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-012-2999-6 | DOI Listing |
Biophys J
January 2025
Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:
Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.
View Article and Find Full Text PDFCells Dev
January 2025
Université Paris-Saclay, Hôpital Kremlin Bicêtre, U1195, Inserm, 94276 Le Kremlin Bicêtre, France. Electronic address:
The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons.
View Article and Find Full Text PDFBiomaterials
December 2024
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China. Electronic address:
As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Ultrasound Medicine, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
Bacteria-based tumor therapy, which releases therapeutic payloads or remodels the tumor's immune-suppressive microenvironment and directly kills tumor cells or initiates an anti-tumor immune response, is recently recognized as a promising strategy. Bacteria could be endowed with the capacities of tumor targeting, tumor cell killing, and anti-tumor immune activating by established gene engineering. Furthermore, the integration of synthetic biology and nanomedicine into these engineered bacteria could further enhance their efficacy and controllability.
View Article and Find Full Text PDFBiophys J
January 2025
Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:
Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!