(±)3,4-Methylenedioxymethamphetamine (MDMA), a widely used drug of abuse, rapidly reduces serotonin levels in the brain when ingested or administered in sufficient quantities, resulting in deficits in complex route-based learning, spatial learning, and reference memory. Neurotrophins are important for survival and preservation of neurons in the adult brain, including serotonergic neurons. In this study, we examined the effects of MDMA on the expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their respective high-affinity receptors, tropomyosin receptor kinase (trk)B and trkC, in multiple regions of the rat brain. A serotonergic-depleting dose of MDMA (10 mg/kg × 4 at 2-hour intervals on a single day) was administered to adult Sprague-Dawley rats, and brains were examined 1, 7, or 24 hours after the last dose. Messenger RNA levels of BDNF, NT-3, trkB, and trkC were analyzed by using in situ hybridization with cRNA probes. The prefrontal cortex was particularly vulnerable to MDMA-induced alterations in that BDNF, NT-3, trkB, and trkC mRNAs were all upregulated at multiple time points. MDMA-treated animals had increased BDNF expression in the frontal, parietal, piriform, and entorhinal cortices, increased NT-3 expression in the anterior cingulate cortex, and elevated trkC in the entorhinal cortex. In the nigrostriatal system, BDNF expression was upregulated in the substantia nigra pars compacta, and trkB was elevated in the striatum in MDMA-treated animals. Both neurotrophins and trkB were differentially regulated in several regions of the hippocampal formation. These findings suggest a possible role for neurotrophin signaling in the learning and memory deficits seen following MDMA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891916PMC
http://dx.doi.org/10.1002/cne.23048DOI Listing

Publication Analysis

Top Keywords

trkb trkc
12
multiple regions
8
rat brain
8
bdnf nt-3
8
nt-3 trkb
8
mdma-treated animals
8
bdnf expression
8
expression
5
bdnf
5
trkb
5

Similar Publications

We determined the relative expression levels of the receptors , , , and and ligands , , , and with RNAseq analysis on fetal human inner ear samples, located TrkB and TrkC proteins, and quantified with in situ hybridization on histological sections between gestational weeks (GW) 9 to 19. Spiral ganglion neurons (SGNs) and satellite glia appear to be the main source of and synthesis peaks twice at GW10 and GW15-GW17. Tonotopical gradients of revert between GW8 and GW15 and follow a maturation and innervation density gradient in SGNs.

View Article and Find Full Text PDF

NTRK (neurotropic tropomyosin receptor kinase)-rearranged spindle cell tumours represent a rare group of molecularly defined soft tissue neoplasms. These tumours, excluding infantile fibrosarcomas, are characterised by NTRK gene rearrangements and exhibit a range of histomorphologies, including spindle, epithelioid or rhabdoid cells with invasive growth. Their prognosis correlates with histological grade, and surgical resection is the primary treatment.

View Article and Find Full Text PDF

The accumulated evidence suggests that varying levels of tyrosine kinase receptor signaling pathway activity may regulate opiate-associated neuroadaptation of noradrenergic system. Neurotrophin-3 (NT-3) interacts with tropomyosin receptor kinases (TRKs), binding mainly to TRKC receptors, which are expressed within noradrenergic neurons in the blue spot (, LC). Considering the difficulties in delivering full-length neurotrophins to the CNS after systemic administration, low-molecular mimetics of loop 4 in NT-3, hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301), and hexamethylenediamide bis-(N-γ-oxybutyryl-L-glutamyl-L-asparagine) (GTS-302), activating TRKC and TRKB receptors, were synthesized.

View Article and Find Full Text PDF

Peripheral and central innervation pattern of mechanosensory neurons in the trigeminal ganglion.

Neuroscience

December 2024

Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

The trigeminal ganglion (TG) comprises primary sensory neurons responsible for orofacial sensations, subsequently projecting to the trigeminal nuclei in the brainstem. However, the circuit basis of nasal mechanosensation is not well characterized. Here we elucidate the anatomical organization of both peripheral and central projections of the TG.

View Article and Find Full Text PDF

NTRK fusion promotes tumor migration and invasion through epithelial-mesenchymal transition and closely interacts with ECM1 and NOVA1.

BMC Cancer

December 2024

Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.

Background: The NTRK fusion gene is a rare cancer driver and a typical representative "diamond mutation". Its unique role in tumor progression is highly important for the clinical diagnosis and treatment of patients with tumors. We searched for NTRK fusion-positive patients in our hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!